
Leipzig University of Applied Sciences

Department of Computer Science, Mathematics

and Natural Sciences

A Recurrent Neural Network

Model for Pattern Recognition

Holger Arnold

A thesis submitted in partial fulfillment of the requirements

for the degree Master of Science in Computer Science

Submitted on December 15, 2003

Advisors:

Prof. Dr. Jürgen Jost

Max-Planck-Institute for Mathematics in the Sciences

and

Prof. Dr. Siegfried Schönherr

Leipzig University of Applied Sciences

Acknowledgments

I would like to thank the following people who have made writing this thesis
easier: Prof. Jost for supporting my interest in neural networks and cogni-
tive systems and for being always open for questions and discussions, Prof.
Schönherr for helping to clarify many passages in the text and for his efforts
to make this university a fine place for studying computer science, Susanne
Schindler for reading an early manuscript and for providing helpful comments,
Bent Großmann for many good discussions and talks, and Liane Fischer for
supporting me in everything I do for six years now.

i

ii

Contents

1 Introduction 1

2 Recurrent neural networks in nature 3

2.1 Basic neuroanatomy of the cortex and the thalamus 3
2.1.1 The cortex . 4
2.1.2 The thalamus . 6

2.2 Results from neuropsychological experiments 8
2.2.1 Illusory contours . 8
2.2.2 Backward visual masking 10
2.2.3 Figure-ground segmentation 11

2.3 Models of the cortical function 12
2.3.1 Adaptive resonance theory 13
2.3.2 Mumford’s theory . 15

3 Theoretical foundation 17

3.1 Interaction of features and categories 17
3.2 Example: visual pattern recognition from local subpatterns . . 19
3.3 A step toward translation invariance 20
3.4 Information entropy . 22
3.5 The maximum entropy principle 24
3.6 The binary pattern recognition model 27

3.6.1 The bottom-up path . 27
3.6.2 The top-down path . 29

3.7 The generalized model . 30
3.7.1 The bottom-up path . 30
3.7.2 The top-down path . 32

3.8 Some Remarks . 33

4 Neural network implementation 35

4.1 Further neuroanatomy . 35
4.1.1 Types of neurons in the cortex 36
4.1.2 Connections between cortical areas 38

4.2 The neuron model . 40
4.3 Implementation of the binary model 43

4.3.1 Feature evaluation . 43

iii

Contents

4.3.2 Category activation . 45
4.3.3 Feature selection . 47
4.3.4 Initial activation and synchronization 49
4.3.5 Network size . 50

4.4 Simulation of the binary model 50
4.5 Implementation of an extended model 53

4.5.1 Feature evaluation . 56
4.5.2 Category activation . 56
4.5.3 Feature selection . 57

4.6 Simulation of the extended model 59
4.6.1 Implementation of the feature selection circuit 60
4.6.2 Competition between the categories 61
4.6.3 Inputs that contain errors 62

4.7 Learning . 65
4.7.1 Hebbian learning . 65
4.7.2 The learning rule . 66

4.8 Simulation of the learning process 67

5 Summary 69

iv

Chapter 1

Introduction

When we are developing technical systems or scientific methods, we often try
to get inspiration from the inventions of nature. But there are many examples
of natural systems having abilities that still no technical system created by
man has. Aside from purely physical features, as for example materials that
are remarkably strong and light, the abilities of animals to perceive their envi-
ronment, to control their own behavior, and to behave socially are fascinating
us above all. For most of these abilities, we cannot explain the mechanisms
behind them. Although the calculation speed of our computers has grown
exponentially over the last decades, even simple animals have capabilities that
we are not able to reproduce. For example, how can a small insect, with only
a few thousand nerve cells, process the data from thousands of eye facets, put
them together to a view of its environment, and control a stable flight?

The most impressive property of the neural data processing in simple ani-
mals is its efficiency. Obviously, a handful of neurons can be enough to realize
complicated tasks of perception and control. In higher animals, and espe-
cially in mammals, it is the incredible complexity of the nervous system that
impresses us most. How can structures composed of billions of communicat-
ing neurons function together effectively and efficiently? The computational
power of the brains of higher animals is especially obvious when we consider
the processing of visual information. What animals accomplish in this area is
far beyond what we can do by today’s technical means.

A great part of the computing power of the natural neural systems of
higher animals is based on the ability to detect patterns in unstructured,
high-dimensional data. It would mean a considerable improvement for many
applications if we could build systems similarly powerful in the processing of
large data sets as the brains of higher animals. The analysis of data plays
an important role for today’s human life. The analysis of seismic data in the
search for natural resource deposits and the recognition of incidents in process
control are only two examples for the application of data analysis methods,
and it is not hard to find many others. As the evolution has produced such
powerful natural systems over millions of years, it is without doubt a wise ap-
proach to study them and to find out the principles of their function. Although
we may not be able to completely understand these systems, and we may not
have the technical capabilities to realize them, we can hope to discover basic

1

Chapter 1 Introduction

principles that we can use for our own developments.
Artificial neural networks, abstract models of the natural neural structures,

have been investigated as computational models since the early days of com-
puter science. Since then, they have been successfully applied to many differ-
ent problems, especially in the area of pattern recognition. In this work, we
are developing a recurrent neural network model to solve pattern recognition
tasks. The application of a recurrent network to pattern recognition means
that information is not only processed bottom-up, from the concrete data to
the abstract concepts, but also in the opposite direction. It is especially impor-
tant for us to develop our model from abstract concepts to a concrete neural
network implementation that can be tested in computer simulations.

In Chapter 2, we explain why it is wise to investigate recurrent networks at
all, and not only pure feed-forward networks. We use neuroanatomical facts
and the results of neuropsychological experiments for our argumentation. At
the end of the chapter we describe two recurrent network models that both
had a significant influence on the development of this area of research. In
Chapter 3, we develop the theoretical foundation for our network model. We
apply concepts from information theory to specify how the bottom-up path
and the top-down path in the network should behave. Chapter 4 is concerned
with the implementation of the abstract model as a neural network. We give
several implementation alternatives and test the effectiveness of the model
using computer simulations of the network. Chapter 5 summarizes the results
of this work and gives an outlook on possible further developments.

2

Chapter 2

Recurrent neural networks in

nature

Why should we consider recurrent neural networks as tools for pattern recog-
nition? The recurrent connections between the neurons make the analysis of
the network’s behavior much more complicated than in pure feed-forward net-
works. Is it worth the effort? In this chapter, we give two main arguments in
favor of recurrent networks. The first argument is the neuroanatomical fact
that there are actually recurrent connections in natural brains. We especially
consider the recurrent connections in the cortex, which is the brain structure
that makes up the greatest difference between the nervous systems of mam-
malian and non-mammalian animals. If there are recurrent connections in the
brains of the animals with the greatest associative capabilities, there must be
a reason for this. The second argument comes from results of neuropsycho-
logical experiments done with monkeys and humans. Some of these results
can only be explained by the assumption that recurrent connections play an
important role in the process of pattern recognition.

2.1 Basic neuroanatomy of the cortex and the

thalamus

A strong indication that recurrent neural networks play an important role
for some brain functions comes from the neuroanatomy of the cortex and the
thalamus. It has been shown that there are extensive recurrent connections
between different cortical areas, as well as between cortical areas and the tha-
lamus. This section gives an introduction to the basic neuroanatomy of these
two structures, the cortex and the thalamus. Later in Chapter 4, where we
develop a neural network implementation of our abstract pattern recognition
model, we shall come back to this subject using a more detailed view. Most
of the information given in this section have been taken from [26] and [27].

Throughout this work, we usually refer to the brain structure of mammals.
What makes them interesting for us are their higher-level cognitive functions,
which are much more developed than in non-mammalian animals. Only these
high cognitive capabilities enabled the various mammalian species to develop

3

Chapter 2 Recurrent neural networks in nature

Figure 2.1: Drawing of the superficial layers in the human frontal cortex

their complex social behaviors, allows them to adapt their behavior to changing
environments, lets primates use tools in a goal-directed way, and gives humans
the unique ability to abstract and to communicate by language. There are a
number of structural differences between the brains of mammals and those of
other vertebrates, and there are even larger differences between the brains of
vertebrates and the neural structures of non-vertebrate animals. In contrast
to this, the brains of most mammalian species share the same fundamental
blueprint.

2.1.1 The cortex

When we speak of the cortex, we actually mean the neocortex; the other, more
primitive parts of the cortex, namely the paleocortex and the archicortex, play
no role for us. The neocortex in adult humans forms a heavily folded, 2–3 mm
thin layer in the upper part of the brain, known as the gray matter. It has
a surface area of about 200000 mm2 and an average neuron density of about
100000 neuron cells per mm2, resulting in approximately 20 billion neocortical

4

2.1 Basic neuroanatomy of the cortex and the thalamus

Figure 2.2: Two original brain drawings by Brodmann

neuron cells.1

What may be surprising is that the structure of the neocortex is nearly
uniform over its whole surface. It consists of six layers that are characterized
by their cell populations and their connectivity. Although more and more
substructures have been identified in these layers in the recent years, the gen-
eral structure has been confirmed in a number of experiments. A possible
explanation of this uniformity is that it has developed by replicating the basic
structure over and over in the evolution of the species. Figure 2.1 shows an
old drawing of the superficial layers in the human frontal cortex. It is one
of many high-quality drawings produced by Santiago Ramón y Cajal using a
staining technique developed by Camillo Golgi. In recognition of their work,
Ramón y Cajal and Golgi received the Nobel Prize in Physiology or Medicine
in 1906.

The cortex of a mammalian brain can be divided into a number of areas.
The first areas have been identified by Korbinian Brodmann and others at the
beginning of the 20th century based on small differences in the cell types. Fig-
ure 2.2 shows two original brain drawings by Brodmann. His studies led him
to a cytoarchitectonic map of the cortical areas, which is shown in figure 2.3.
Later, this subdivision into areas has been refined and corrected using lesion
studies, done for example with stroke patients, and new imaging methods. To-
day, it is assumed that each hemisphere of the human cortex contains about
100 areas, with approximately 100 million neurons in each area.

It has been confirmed in many experiments that each cortical area has a
specific function, and many of these functions have been identified at least
partially. Based on their connectivity and on results from brain imaging stud-
ies, the cortical areas can be partially ordered with respect to their relative
functional level. There are lower areas that are concerned with more concrete,
sensory or motor related data, and higher areas that are concerned with more
abstract concepts.

Although the functional division into areas may suggest this, the way the

1Note that such numbers are only rough estimates and that the numbers given in different
publications vary considerably.

5

Chapter 2 Recurrent neural networks in nature

Figure 2.3: Map of the cortical areas

cortex is composed of areas is not the same as the way a computer program is
composed of subprograms or the way a human-made machine is built up from
parts. Whereas the parts of a computer program or a machine are usually
designed as independent modules, which hide their internal state and com-
municate as little as possible, the cortical areas are highly interconnected.
Actually, more than 60% of the neurons in the cortex project their output
not only locally, but also to another area of the brain. This means that no
area works isolated from the others and suggests a computational and com-
positional model that is quite different from the one we know from human
engineering.

Despite the extensive interconnections, each area is connected only to a
few other areas. It has been found in experiments that of the 10000 directed
paths that are possible between the estimated 100 areas in each hemisphere
only about 2000 exist. Most connections between areas are symmetric in their
connectivity and in the number of connections: if area A projects to area B,
then area B also projects to area A, and the number of connections has the
same order of magnitude in both directions. In Chapter 4, we shall look at the
different cell types in the cortex and how they form connections. The essential
point for us now is that if two cortical areas are connected at all, then they
are usually recurrently connected.

2.1.2 The thalamus

The thalamus is a small subcortical structure that is located in the center of
the brain, at the top of the brain stem. It consists of two symmetric ellipsoidal
parts, one in each cerebral hemisphere. The thalamus is composed of about
50–80 nuclei, and each nucleus contains approximately 2 million neurons.

What makes the thalamus interesting for us are its connections to the cor-
tex. All sensory input to the cortex, with the exception of the olfactory sense,
passes the thalamus before it is relayed up to the cortical areas. Most cor-
tical areas receive their input from a specific nucleus of the thalamus. But

6

2.1 Basic neuroanatomy of the cortex and the thalamus

cortical area

sensory input

thalamus

neocortex

thalamic nucleus

Figure 2.4: The connections between cortical areas and the thalamus

information flows not only from the thalamus to the cortex: most thalamic
nuclei receive at least as many connections from cortical areas as they send to
them. There are even pairs of nuclei and areas where the number of backward
connections is much greater than the number of forward connections. The
recurrent connections between a cortical area and its thalamic nucleus are
similar in their structure to the connections between two cortical areas. Their
layout suggests that to a cortical area, its thalamic nucleus appears similar to
an area of a lower level.

The thalamus gets its input from multiple sources. Some nuclei of the
thalamus directly receive sensory signals and transmit them to the primary
sensor areas of the cortex. An example is the lateral geniculate nucleus (LGN),
which receives visual sensory data coming from the retina through the optic
nerve. This nucleus is connected to the primary visual area (V1) in the cortex.
Other nuclei receive inputs coming from further subcortical structures. An
example for this is the posterior ventral lateral nucleus (VLp), which receives
motor-related signals from the cerebellum and transmits them to the primary
motor area of the cortex. If we compare the number of connections that the
thalamus receives from the various sources, however, we find that much more
connections are coming from the cortical areas than from the other sources.
This is a remarkable finding, as it means that the top-down information flow
must be very important for the processing of the sensory information.

To understand the difference in number of connections from the multiple
sources, let us look at some numbers which have been found for the visual
system of the cat [35]. As in all mammals, the retinal information is transmit-
ted along two pathways to the cortex, the X pathway (called P in primates),
which processes shape and color data, and the Y pathway (called M in pri-

7

Chapter 2 Recurrent neural networks in nature

mates), which processes motion data. Taken these two pathways together, 105

axons transmit information from the retina to the thalamus where they form
synapses with 3 · 105 LGN neurons, which relay the visual information up to
the cortex. The pathway that runs from the cortex back to the thalamus,
however, consists of 4 · 106 axons that form synapses with LGN cells. This
means that the LGN receives 40 times as many connections from the cortex
as it receives from the retina, and 13 times as many connections as it sends
to the cortex. Even by taking into consideration that the retinal axons may
have more synapses than other axons, it is estimated that only 10–20% of the
synapses on LGN neurons are coming from retinal axons, and 80–90% from
cortical axons. Although the LGN may be an extreme case among the tha-
lamic nuclei, these figures indicate that recurrent connections must play an
important role in the processing of the sensory data.

2.2 Results from neuropsychological

experiments

Besides the neuroanatomical fact that there are recurrent connections in the
cortex and between cortex and thalamus, there are many results from neu-
ropsychological experiments which suggest that the recurrent connections are
important to the function of these structures. We now look at some of these
results and try to interpret their effects.

2.2.1 Illusory contours

There are situations, which are known as optical illusions, where our percep-
tion can not be explained solely by the visual information that reaches our
retina. One of these optical illusions is the illusory contour effect. This is
the effect that we perceive the border of a shape at a position in our visual
image where there is no border. The Kanisza square [17] shown in figure 2.5
is an example of a visual stimulus where this effect occurs: the four corner
disks form an imaginary square whose borders we perceive, although there is
no visual evidence for them.

In [21], Lee and Nguyen analyze the responses of neurons in the cortical
visual areas V1 and V2 of macaque monkeys, while they are exposed to a
Kanisza square and several other stimuli. Figure 2.6 shows the experimental
setting: neurons from V1 and from V2 were compared with respect to their
firing rate over time, which is illustrated in the diagrams on the right. It was
already known from earlier experiments that some neurons in area V2 respond
to illusory contours. A common interpretation for this is that area V2 can
perform basic shape composition because the receptive fields (the subsets of
the input from which the neurons directly receive input) of V2 neurons are
large enough to capture the presented shape.

8

2.2 Results from neuropsychological experiments

Figure 2.5: The Kanisza square

t

t

V2 receptive field

V1 receptive field

V1 neuron

V2 neuron

Figure 2.6: An experiment to measure the illusory contour effect

9

Chapter 2 Recurrent neural networks in nature

In this experiment, however, not only V2 neurons responded to the illusory
contours, but also neurons in the lower-level visual area V1. The Kanisza
square was scaled so that the receptive fields of the V1 neurons were smaller
than the distance between the corner disks. This means that the responding
neurons in V1 can not have detected the illusory border in the visual informa-
tion coming from the retina. Because the square shape in the Kanisza figure is
an abstract concept, it is hard to believe that the border signal has spread out
laterally from the neurons that detected the corners. A convincing explanation
for the effect is that the border information comes from neurons in higher-level
areas, for example from the neurons in V2. This theory is supported by the
observation that the responses of the neurons in V1 were weaker than the
responses of the V2 neurons, and that the V1 neurons responded later than
the V2 neurons (100–190 ms after the presentation of the stimulus for V1,
compared to 70–95 ms for V2).

2.2.2 Backward visual masking

In a masking experiment, two stimuli, the target and the mask, are successively
presented to a subject. If the target is presented before the mask, we speak of
backward masking, otherwise we speak of forward masking. Depending on the
delay between target and mask, called the stimulus onset asynchrony (SOA),
the mask can disturb or completely prevent the perception of the target. At
least the effect of backward masking is attributed to be a consequence of the
recurrent computation in the cortex.

In [32], Rolls et al. investigate the effects of a backward visual masking
experiment on the neural level. They recorded the responses of neurons in
the inferior temporal cortex (IT) and the superior temporal sulcus (STS) of
macaque monkeys. IT and STS belong to the ventral stream of visual infor-
mation processing. They are part of the temporal cortex, which is commonly
supposed to be the region where the recognition of complex objects like faces
takes place.

The authors of the cited article used different faces as target stimuli and
compared the responses of face-specific neurons under different masking con-
ditions. They found that with decreasing SOA, the difference of the firing
rates in response to the more effective and to the less effective stimuli de-
creased. This means that the ability to separate the different stimuli by the
firing rate of the recorded neurons decreased. The authors also computed the
mutual information of the stimuli and the resulting spike train. The result
was that with a decreasing SOA, the resulting spike train contained less and
less information about the presented target stimulus.

The reduction of information about the stimulus can be interpreted as the
neurophysiological reason for the psychological masking effect. An explanation
of this effect, given for example in [19], is that the mask, as it comes closer
in time to the stimulus, interrupts the recurrent processing of the stimulus.
When the information about the target stimulus are fed back from higher

10

2.2 Results from neuropsychological experiments

target stimulus higher arealower area

1. The information about the target stimulus is transmitted
from the lower to the higher area.

mask stimulus higher arealower area

mismatch!

2. Some milliseconds later, the information about the target
stimulus is fed back from the higher to the lower area and
clashes with the information about the mask stimulus.

Figure 2.7: The backward visual masking effect

to lower areas, there is a mismatch with the data about the mask stimulus,
which is now coming from even lower or sensory areas. Figure 2.7 illustrates
this situation.

2.2.3 Figure-ground segmentation

The separation of figural objects from the background is an important cogni-
tive task and a prerequisite for object recognition. In a realistic environment,
where objects are partially occluded by other objects and virtual contours are
generated by shadows or surface textures, figure-ground segmentation cannot
be achieved using only local filter operations. Therefore, higher visual areas
must be involved in this task. If we look, for example, at the famous image of
the Dalmatian dog in figure 2.8, we need only a small effort to see the contours
of the animal. Without the higher-level concept “dog”, using only local infor-
mation, we would not be able to recognize any contours, and consequently, we
would see only a meaningless pattern of white and black dots.

In [20], Lee et al. attempt to verify the hypothesis that the information
whether a point in the visual field belongs to an object or to the background

11

Chapter 2 Recurrent neural networks in nature

Figure 2.8: The famous Dalmatian dog

is already available in the lower visual areas. They recorded the responses
of a number of neurons in the primary visual area V1 of macaque monkeys
over a longer time interval. The stimuli they used contained textured borders,
textured stripes, and textured and uniformly colored rectangles and disks over
a background. Because their receptive fields were too small, the recorded
neurons could not detect from the retinal information alone whether they
scanned a part of a figure or the background.

In the experiments, it was found that 40–60 ms after the presentation of
the stimulus the recorded neurons worked as local filters, and after 80–200 ms
their responses changed depending on contextual information. Over this time,
the firing rate of the neurons that represented object borders, object centers,
and the interior of objects increased, while the firing rate of neurons that
represented background decreased. The possibility that these effects were
caused by local interactions among V1 neurons was ruled out by the design
of the experiments. Therefore, a convincing explanation of the results is that
they are the consequence of feedback from higher visual areas.

2.3 Models of the cortical function

The neuroanatomical and neuropsychological evidence for recurrent informa-
tion processing in the cortex have led to the development of a large number of
different models of the cortical function. In this section, we exemplarily look
at two of these models that both had a considerable influence on this field of
research.

12

2.3 Models of the cortical function

comparison

category

input
layer

layer

layer

...

... ...

reset

subsystem
attentional

−

+

ρ
orienting
subsystem

F0

F1

F2

input

Figure 2.9: The architecture of an ART network

2.3.1 Adaptive resonance theory

Every learning system is confronted with the problem that it must be able
to continuously adapt to new data without overwriting what it has learned
before. This problem is called the stability-plasticity dilemma [10, 11]. To
solve it, Carpenter and Grossberg developed their adaptive resonance theory
(ART) [5, 6, 7], which became one of the most influential theories of the cortical
function.

The adaptive resonance theory specifies a model for an unsupervised classifi-
cation network. In a learning process, this network develops a set of categories
from a given training data set. When the network has developed a represen-
tative category set, it can be used to classify further input vectors into the
categories built in the learning process. In an ART network, learning and
recognition are typically interleaved until the network has reached a stabilized
state. Categories are represented by reference vectors, which are adapted to
matching inputs. The stability-plasticity dilemma is solved by adapting only
reference vectors that are sufficiently similar to the input. For input vectors
that cannot be classified, a new category is created.

Figure 2.9 (redrawn from [2]) shows the simplified architecture of an ART
network. It is composed of three layers, the input layer F0, the comparison
layer F1, and the category layer F2. The input layer stores the input vector and
transmits it to the comparison layer. Comparison layer and category layer are
fully interconnected. The weights of these connections, which are symmetric
in both directions, represent the reference vectors of the different categories.

13

Chapter 2 Recurrent neural networks in nature

The input in the comparison layer activates the categories in the layer F2
with different strengths. The attentional subsystem selects the category with
the strongest activation and suppresses all other categories. To test whether
the reference vector of the strongest category is sufficiently similar to the
input, it is sent back to the comparison layer where it is compared to the
input coming from F0. The threshold value for the similarity is determined
by a constant ρ. If the vectors are sufficiently similar, the input is assigned
to the selected category, and its reference vector is adapted in the direction
of the input vector. If the vectors are not sufficiently similar, the orienting
subsystem generates a reset signal, which deactivates the selected category
for the whole presentation of the current input. The attentional subsystem
then again selects the category with the strongest activation. This hypothesis-
testing cycle continues until a matching category is found. If there is no such
category, a new one with the current input as reference vector is created.

It can be shown that if a fixed set of inputs is used, the network stabilizes
after a certain number of iterations. In the stabilized state, every input vector
from the set can be classified without search, so that the matching category is
always activated in the first cycle. Thus, in the ART model, the recurrent con-
nections are only required for the learning process, and have no real function
for the actual recognition process.

Many variants of the ART model have been developed since its introduction.
A descendant of ART by Raizada and Grossberg is the LAMINART model [30],
a theory of the functional role of the layered architecture of the cortex. With
this model, the authors attempt to solve what they call the preattentive-
attentive interface problem: Most areas in the cortex process information
from different sources. There are bottom-up connections coming from sense
organs or lower areas, top-down connections coming from higher areas, and
lateral connections coming from neighboring areas of the same level. In the
opinion of the authors, a cortical area must keep apart the different sources of
information in order to know which part of the incoming data describes objects
of the physical environment, and which part is only the result of feedback from
higher areas.

Using a part of the visual system as an example, the authors of the model ar-
gue that data coming through the lateral connections must be able to generate
activity in an area, while data coming through the top-down connections must
only be able to support activity already generated by other sources. Using neu-
roanatomical data, the authors suggest a concrete neural circuit consisting of
two feedback loops, one for lateral interaction, one for top-down interaction.
These two loops interact through a common interface.

In all models that are derived from the adaptive resonance theory, bottom-
up activity is enhanced when the input and the activated category match, and
attenuated when they do not match. This is the opposite of what happens in
the model described in the next subsection.

14

2.3 Models of the cortical function

2.3.2 Mumford’s theory

In two consecutive articles [26, 27], David Mumford presented his theory on
the computational architecture of the cortex. The first article is concerned
with the role of the recurrent connections between thalamus and cortex. The
classical theory for the role of the thalamus was that it relays the signals
coming from the sense organs up to the cortex, but this theory cannot explain
the purpose of the large number of connections going from the cortex back to
the thalamus.

In his article, Mumford proposes that each nucleus in the thalamus con-
tains the view of the world for the cortical areas that this nucleus is connected
to. For lower sensory areas, this view directly correlates to the signals com-
ing from sense organs, and for higher areas, this view reflects more abstract
concepts. Mumford compares the thalamus to a blackboard, a data structure
that is commonly used to coordinate the work of a number of parallel and
independent problem solving processes. In his model, the forward connec-
tions transmit the current view of the world from the thalamus to the cortex
where it is analyzed and updated. The backward connections then transmit
the modifications suggested by the cortical areas back to the thalamus where
the suggestions of the different areas are integrated. Because this integration
is an active process, Mumford calls the thalamus an active blackboard.

The second of the cited articles is concerned with the role of the connec-
tions between cortical areas that work on different functional levels, one on a
higher level than the other (see section 2.1.1). For the top-down connections,
Mumford proposes that they are used to transmit higher-level knowledge to
the lower area, where it is used to eliminate noise and ambiguities from the
lower-level data. He proposes that the top-down connections carry a recon-
struction of lower-level data that corresponds to the state of the higher area.
This reconstruction is called a template in his theory. In the case that the
lower area is directly connected to sensory input from the thalamus, as for ex-
ample the visual area V1, such a template would be very similar to a sensory
signal.

To compensate for the variations in real-world data, Mumford assumes that
the templates are parametric, and that the top-down connections transmit
multiple instances of a template at a time. The lower area compares the
template it receives from the higher area to its own data, possibly coming
directly from sense organs, and computes the difference. This difference, which
is not a simple numeric value, but in structure similar to the data itself, is called
a residual in Mumford’s theory. When it has been computed, it is transmitted
through the bottom-up connections to the higher area where it is used to
adapt the state and to generate new templates. This process continues until
the template from the higher area completely matches the data of the lower
area, which means that the state of the higher area fully explains the data it
receives.

Although Mumford’s theory has many interesting aspects, he remains rather

15

Chapter 2 Recurrent neural networks in nature

abstract in his suggestions, at least in the cited articles. In particular, he does
not propose a detailed neuronal model or an algorithm to implement his theory.

16

Chapter 3

Theoretical foundation

Our goal in this work is to develop a neural network model that can be applied
to solve pattern recognition tasks. In this chapter, we build up the theoretical
foundation for our network model. Our starting point is the question how a
pattern recognition system should behave. Proceeding from this question, we
suggest an abstract recurrent model for the function of pattern recognition
processes in the cortex, which is based on information-theoretical considera-
tions.

3.1 Interaction of features and categories

The purpose of a pattern recognition system is to classify inputs presented to
the system into a number of categories. To classify a given input vector, the
system1 evaluates certain properties of this vector; these properties are called
features. Depending on the type of the input, features can have different
meanings. For example, in images, the pixel values could be used as features,
in visual shapes, the features could be lines and other basic elements, and in
sounds, the features could be frequency values.

Based on its observations, the system assigns probabilities to the different
categories, that is, the system forms a hypothesis. We assume that the cate-
gories have been developed in a supervised or unsupervised learning process.
In such a process, sample inputs for the different categories, which are rep-
resentative of the data that are to be analyzed, are presented to the system.
During the recognition of an input pattern, the categories are fixed. Because it
is not always possible to uniquely assign an input pattern to a single category,
the output of the system is a probability distribution over the set of categories.

How should such a pattern recognition system behave? If we consider real-
istic sensory data, we find that it is usually very high-dimensional and serves
multiple pattern recognition processes. For a single pattern recognition task,
however, most of the information in a sensory data stream is irrelevant and
makes the task more difficult. Because realistic sensory input is noisy, these
additional data can even misguide the system completely. It should therefore
be a good strategy not to evaluate the whole input, but only the parts that are

1When we speak of “the system” in this work, we refer to the pattern recognition system
that we are developing.

17

Chapter 3 Theoretical foundation

X Y

g

f

input

(lower level) (higher level)

features categories

Figure 3.1: The interaction of features and categories

relevant for a specific task. Which features in the input are relevant depends
on the specific categories that are considered, or more general, on the internal
view of the world that the system has at a certain point in time. During the
recognition process, this internal view changes due to the observation of fea-
tures in the input and also due to information coming from other systems, for
example from higher cognitive structures.

These thoughts lead us to a model which is based on an interaction between
features and categories. We assume that there are M distinct features X =
(x1, . . . , xM) where xk is the value of the feature k. At a given point in time,
the values of the features that have been evaluated up to that point are known
to the system. The values of the other features may be unknown, but the
system can use knowledge about dependencies between the features to derive
information about features that have not yet been evaluated. We assume that
there is a fixed set of N categories with probabilities Y (t) = (y1(t), . . . , yN(t))
where yi(t) is the probability that the input corresponds to category i at time t.
Features and categories then interact in the following manner:

1. A subset of the features in the input is evaluated. The information
acquired by these observations change the probabilities of the categories.

2. The probabilities of the categories in turn determine which of the features
are evaluated next.

This interaction continues until the system comes to a conclusion about the
presented input.

As illustrated in figure 3.1, our pattern recognition system is composed of
two subsystems: one on a lower level that deals with more local and concrete
data, and one on a higher level that deals with more global and abstract data.
These subsystems communicate via two pathways, the bottom-up pathway f ,

18

3.2 Example: visual pattern recognition from local subpatterns

retinal input

presented image

local subpatterns
detector cells for

receptive field

Figure 3.2: Extracting local subpatterns from visual input

which transmits information about the observed feature values, and the top-
down pathway g, which transmits information about the probabilities of the
categories.

3.2 Example: visual pattern recognition from

local subpatterns

The recognition of visual patterns in mammals is a highly complex process that
involves many cortical and non-cortical regions of the brain. In this work, we
use a small part of this process as a reference example. As natural brains are
much more complex than the systems we are able to simulate at this time
(the visual pattern recognition processes in humans probably involve billions
of neurons), we should not expect that a computer model could be similarly
powerful. Our aim can only be to gain some insight into the process of visual
pattern recognition by modeling a small but fundamental part of this process.

It is known that there is a stage in the processing of the visual information
where local subpatterns such as lines, edges, or corners of specific orientations
are extracted. Detector cells for these subpatterns, called simple cells, have
been identified in the visual area V1 and other cortical areas of cats and
monkeys first by David Hubel and Torsten Wiesel [15], who received the Nobel
Prize in Physiology or Medicine in recognition of their work in 1981, together
with Roger Sperry.

Figure 3.2 illustrates how the subpatterns are extracted from an image.
Every detector cell has an associated receptive field, which is the subset of the
retinal input from which it directly (through forward connections) receives
information. Usually, the receptive fields of neighboring detector cells overlap.

19

Chapter 3 Theoretical foundation

active detector

inactive detector

input

Figure 3.3: Extracting simplified features from visual input

The subpatterns that are detected in the visual input are integrated to more
complex patterns in higher brain regions. In this example, we use the local
subpatterns as features and the complex patterns as categories.

To simplify the problem, we assume that the visual input consists of a
rectangular matrix of pixels, which are either set (black) or unset (white). A
subpattern, and thus a feature, is a 3×3 matrix of pixels. Because we use
only those subpatterns whose center pixel is set, there are 28 = 256 different
features. We assume that for every pixel in the input, there is one detector
for each feature, whose center is located at the position of this pixel. When a
feature is evaluated, its detector becomes active if the pixel pattern in the input
around the center of the detector matches the pixel pattern of the feature;
otherwise the detector stays inactive. Active detectors have the output 1,
inactive ones have the output 0. It is also possible to allow values from the
interval [0, 1] as output of the feature detectors, depending on the similarity
between the pixel pattern of the detector and the pixel pattern in the input.

Figure 3.3 shows two feature detectors at the same pixel location in the
input. The upper detector is active because its pixel pattern matches the
pixel pattern in the input. The lower detector is inactive because its pixel
pattern differs from the pixel pattern in the input. Obviously, at most one
of the feature detectors at each pixel location can be active. Because the
receptive fields of neighboring detector cells overlap, the value observed at
a pixel location restricts the values that the detectors at neighboring pixel
locations can observe.

3.3 A step toward translation invariance

The visual system of mammalian animals has the ability to reliably recognize
objects whose images have been subjected to complex visual transformations,
resulting for example from changes in the lighting conditions, viewing direc-
tion, position, or distance. There are several hypotheses about the mechanisms

20

3.3 A step toward translation invariance

in the visual system that compensate for all these changes. Two important
principles that can be the basis for transformation invariant object recognition
are replication and normalization [37, 40].

Replication means that a subsystem that detects a specific object is repli-
cated over the space of transformations. For example, to compensate for
changes in object position, the subsystem that detects a specific object can
be replicated at different positions in the retinal data stream. To compensate
for changes in object distance, multiple subsystems that all detect the same
object but at different sizes can be used. Similar strategies can be applied to
compensate for other transformations. It is obvious that an approach that is
solely based on replication is impractical because it suffers from combinatorial
problems. The number of replicated subsystems that would be required to
compensate for all combinations of transformations and objects is simply too
large. Nevertheless, in [39], Wang applies replication to model a neural net-
work which recognizes patterns invariant to translation, rotation, and scaling.

Normalization, on the other hand, means that the input is transformed to
a normalized representation that is independent of the input transformations.
The object detecting subsystems then work on this normalized representation.
In this approach, the representation of an object consists of its invariant fea-
tures, which are the features that remain unchanged by the transformations
that are to be compensated. Although the normalization approach may seem
more elegant than simple replication, it has its own problems. Extracting fea-
tures from the input that are invariant to a number of transformations is a very
difficult task, while the neural circuits in the visual system have a relatively
simple structure. Besides that, if the visual system could transform every in-
put to a normalized representation, then an object that has been learned once
should be immediately (without further learning) recognizable under various
transformations. This, however, is not consistent with the results of some
neuropsychological experiments [28].

In [37], Ullman and Soloviev describe a model for translation invariant pat-
tern recognition that can easily be applied to our example from section 3.2.
The model is simple and biologically very plausible. It uses both, replication
and normalization. In this model, the detectors for local subpatterns are repli-
cated over the whole visual field. It is important that the receptive fields of
the detectors at neighboring positions overlap. The output of all detectors for
a specific subpattern at different positions is then joined to a single detector.
This means that for each local subpattern, it is only detected how frequently
it occurs in the input, but not at which positions it occurs. In the cited article,
the authors work with subpatterns similar to the ones in our example. They
show that the information how frequently each subpattern occurs in the input
is sufficient to uniquely identify the greatest part of the possible patterns. In
simple cases, it is even sufficient to detect only whether a subpattern occurs
in the input or not. As no position information is involved, the recognition
process is translation invariant. The reason why it is still possible to identify
most patterns is that the detectors implicitly provide relative position infor-

21

Chapter 3 Theoretical foundation

mation because of their overlapping receptive fields. Actually, most possible
input patterns can only be composed of a single set of subpatterns. Of course
the number of patterns that cannot be uniquely identified increases with the
size difference between patterns and subpatterns (other parameters play also
a role).

3.4 Information entropy

Before we can go on in the development of our model, we need to introduce
some concepts from information theory [1, 16]. The first one is the concept
of information entropy, developed by Claude Shannon and Warren Weaver in
their efforts to quantitatively understand information [34]. In their theory, the
information content I(x) of an event x with probability P (x) 6= 0 is given by

I(x) = − log P (x) (3.1)

Events with a probability of 0 or 1 contain no information. The base of the
logarithm is just a matter of the unit in which the information is measured.
Shannon originally used base-2 logarithms and created the term “bit” for this
unit of information. In this work, we use natural logarithms and add a definite
value at 0:

log x :=

{

ln x for x > 0

0 for x = 0
(3.2)

Let X be a discrete random variable that can take values from the set
{x1, . . . , xn} with a probability distribution p = (p1, . . . , pn) where pi :=
P (X = xi) is the probability that X takes the value xi. The information
entropy H(X) of X is then defined as the expectation of the information
content of X with the probability distribution p:

H(X) = −
n
∑

i=1

pi log pi (3.3)

For a continuous random variable X with a probability density function p,
the summation is replaced by an integration over the possible values of X (we
assume that X takes real values):

H(X) = −

∫ +∞

−∞

p(x) log p(x) dx (3.4)

In cases where only the probability distribution itself is of interest and not
the values of the random variable, we also speak of the entropy H(p) of the
probability distribution p.

The entropy of a random variable is the amount of information that we can

22

3.4 Information entropy

expect to gain when we measure its value. In this sense, entropy measures
the degree of uncertainty that we have about the value of a random variable.
If one of the values of X has probability 1, and consequently all other values
have probability 0, then the value of X is completely determined. Because we
can gain no information from measuring such a variable, its entropy is 0. If, on
the other hand, all values of X have equal probability, then we are maximally
uncertain about its value. In the discrete case, the entropy of such a uniformly
distributed random variable is − log 1/n.

We now show that the information entropy H(X) is a suitable measure for
the amount of uncertainty about the value of X . For this, we show that, given
a discrete probability distribution p, any modification of the probabilities of p
toward the uniform distribution results in a distribution with greater entropy
than p.

Lemma 3.1 Let f : I → R be a twice differentiable real function on the
interval I with f ′′(x) > 0 for all x ∈ I. Let a, b ∈ I, ε ∈ R with a > b and
0 < ε < a − b. Then

f(a) − f(a − ε) > f(b + ε) − f(b) (3.5)

Proof First, we note that f(a)−f(a−ε) =
∫ a

a−ε
f ′(x) dx and f(b+ε)−f(b) =

∫ b+ε

b
f ′(x) dx. Because f ′′(x) > 0 for all x ∈ I, f ′ is strictly monotonic

increasing in I. This means that f ′(x) > f ′(y) for all x ∈ [a− ε, a] and for all

y ∈ [b, b + ε], and consequently
∫ a

a−ε
f ′(x) dx >

∫ b+ε

b
f ′(x) dx. �

Proposition 3.2 Let p = (p1, . . . , pn) and p′ = (p1, . . . , pi − ε, . . . , pj +
ε, . . . , pn) be two discrete probability distributions, let pi > pj and 0 < ε <
pi − pj . Then p′ has a greater entropy than p: H(p′) > H(p).

Proof

H(p′) − H(p) = pi log pi − (pi − ε) log(pi − ε)

+ pj log pj − (pj + ε) log(pj + ε) (3.6)

We set f(x) := x log x, I := [0, 1], a := pi, b := pj , and get:

H(p′) − H(p) = (f(a) − f(a − ε)) − (f(b + ε) − f(b)) (3.7)

with f ′(x) = 1 + log x and f ′′(x) = 1/x for x > 0, limx→+0 f ′(x) = −∞, and
limx→+0 f ′′(x) = +∞. By applying Lemma 3.1, we see that H(p′)−H(p) > 0
and therefore H(p′) > H(p). �

The information entropy of a random variable X is invariant to permu-
tations of the values of that variable. We can therefore conclude that any
modification of a probability distribution p toward the uniform distribution

23

Chapter 3 Theoretical foundation

results in a distribution p′ with higher entropy than p. It immediately fol-
lows that the uniform distribution is the distribution with maximum entropy.
This shows that we can use the entropy of a random variable X as a measure
for the amount of uncertainty about X , thus as a measure for the amount of
information that is contained in X . It is even possible to show that informa-
tion entropy is the only consistent measure for this quantity; proofs of this
proposition can be found in [1, 16].

3.5 The maximum entropy principle

The process of pattern recognition as described in section 3.1 is an example
of a situation where we must draw conclusions based on data that is often
incomplete and noisy. The results of these conclusions are the probability
values that we assign to the different categories. To draw valid conclusions, we
must take into account all the knowledge we have, while we must avoid to use
information that is not contained in the data. When we assign probabilities to
the categories based on the data, we must therefore keep as much uncertainty
as possible in the resulting probability distribution.

We have seen in the preceding section that without further constraints the
probability distribution with the greatest amount of uncertainty is the uniform
distribution. If we have no information about the input, we must assign equal
probabilities to the categories. But what if we have some information? In this
case, we must choose a distribution with maximum uncertainty from all prob-
ability distributions that are consistent with our information. Because entropy
is a measure for the uncertainty contained in a distribution, we have to maxi-
mize the entropy of the category distribution under the constraints determined
by our data. This principle is called the maximum entropy principle.

Let {fk : X → R}k=1,...,m be a family of m real functions on the discrete
random variable X = (x1, . . . , xn), and let us assume that the information we
have about the input are the expectations Fk of the functions fk. Then, to get
the most uniform distribution that is consistent with our information, we have
to find a probability distribution p = (p1, . . . , pn) that maximizes the entropy
H(p) with respect to the constraints

(i)

n
∑

i=1

pi = 1 (3.8)

(ii)
n
∑

i=1

pifk(xi) = Fk, k = 1, . . . , m (3.9)

We can find a solution to this problem by using the method of Lagrange

24

3.5 The maximum entropy principle

multipliers [13]. We define the function L:

L(p1, . . . , pn; λ0, λ1, . . . , λm) =

−
n
∑

i=1

pi log pi − λ0

(

n
∑

i=1

pi − 1

)

−
m
∑

k=1

λk

(

n
∑

i=1

pifk(xi) − Fk

)

(3.10)

where λ0, λ1, . . . , λm are the Lagrange parameters. Solving ∂L/∂pi = 0 gives

∂L

∂pi

= − log pi − 1 − λ0 −
m
∑

k=1

λkfk(xi) = 0 (3.11)

pi = exp

(

−1− λ0 −
m
∑

k=1

λkfk(xi)

)

(3.12)

Now we use constraint (i) to eliminate λ0 and get the distribution

pi =
exp (−

∑m

k=1
λkfk(xi))

Z(λ1, . . . , λm)
(3.13)

with the partition function

Z(λ1, . . . , λm) =

n
∑

j=1

exp

(

−
m
∑

k=1

λkfk(xj)

)

(3.14)

In simple cases, the constraints (ii) can be used to eliminate λ1, . . . , λm, but for
most practical applications we have to leave p in parametric form. Probability
distributions of the form of equation 3.13 are known as Gibbs distributions,
named after J. Willard Gibbs who introduced the maximum entropy principle
into the field of statistical mechanics at the end of the 19th century.

We now show that H(p) actually takes its maximum at the distribution
given by equation 3.13. The idea of the following argumentation has been
taken from [16].

Lemma 3.3 Let p = (p1, . . . , pn) and q = (q1, . . . , qn) be two discrete proba-
bility distributions. Then

H(p) ≤ −
n
∑

i=1

pi log qi (3.15)

with equality if and only if p = q. The function on the right hand side of
equation 3.15 is called the cross entropy of p and q, denoted H(p ‖ q).

25

Chapter 3 Theoretical foundation

Proof log x ≤ x − 1 for 0 < x < ∞ with equality if and only if x = 1.
Therefore, with x = qi/pi,

n
∑

i=1

pi log
qi

pi

≤
n
∑

i=1

pi

(

qi

pi

− 1

)

= 0 (3.16)

H(p) ≤ −
n
∑

i=1

pi log qi (3.17)

with equality if and only if p = q. �

Proposition 3.4 Let X = (x1, . . . , xn) be a discrete random variable, and let
D be the set of all probability distributions of X that satisfy the constraints

n
∑

i=1

pifk(xi) = Fk, k = 1, . . . , m (3.18)

Then any distribution p∗ ∈ D for which H(p) ≤ H(p∗) holds for all distribu-
tions p ∈ D must have the form

p∗i =
exp (−

∑m

k=1
λkfk(xi))

Z(λ1, . . . , λm)
, i = 1, . . . , n (3.19)

with

Z(λ1, . . . , λm) =
n
∑

j=1

exp

(

−
m
∑

k=1

λkfk(xj)

)

(3.20)

Proof From Lemma 3.3 we know that for all probability distributions p =
(p1, . . . , pn) and q = (q1, . . . , qn), it holds that H(p) ≤ −

∑n

i=1
pi log qi, with

equality if and only if p = q. Setting q := p∗ gives

H(p) ≤
n
∑

i=1

pi

(

log Z(λ1, . . . , λm) +

m
∑

k=1

λkfk(xi)

)

(3.21)

which can also be written as

H(p) ≤ log Z(λ1, . . . , λm) +

m
∑

k=1

λkFk (3.22)

with equality if and only if p = p∗. Consequently, any maximum entropy
distribution from D must have the form of p∗ in equation 3.19. �

26

3.6 The binary pattern recognition model

3.6 The binary pattern recognition model

Now we have the tools available to develop our pattern recognition model.
We begin with a simplified model where the feature values and the knowledge
about the categories which is stored in the system are restricted to binary
values. As we have described in section 3.1, our model is based on an inter-
action of features and categories — some features are evaluated in the input,
the observed values modify the probabilities of the categories, which in turn
determine the features that are evaluated next. This process continues until
the system comes to a conclusion about the input.

Before the system can be used to classify input patterns, it must be fed with
information about the classes. This can be done in a supervised or unsuper-
vised learning process where sample input patterns, which are representative
of the different categories, are presented to the system. The data that must
be extracted from the sample inputs in the learning process are the associa-
tions between features and categories, that is, information about the features
that typically occur in input patterns of the different categories. It depends,
however, on the concrete application what quantities should be stored in the
system and how an input pattern is classified into a category. There is no
method which is optimal for all situations.

In the binary model, we define the set P of all possible input patterns of
length M as P := {(x1 . . . xM) |xi ∈ {0, 1}}. The elements of an input pattern
are the features that are evaluated in the input. The distance d(p, q) between
two input patterns p = (p1 . . . pM) and q = (q1 . . . qM) is the number of features
that are different between p and q: d(p, q) := | {i | 1 ≤ i ≤ M, pi 6= qi} |. This
function is known as the Hamming distance.

The N categories are stored in the system as reference patterns g1, . . . , gN .
How these patterns are created depends on the concrete learning process used
to develop the system. We consider an input pattern p correctly classified into
a category c, 1 ≤ c ≤ N , if the distance between p and gc is minimal, that is,
if d(p, gc) ≤ d(p, gi) for i = 1, . . . , N . Thus, we can say that the k-th element
gi,k of the reference pattern gi “predicts” the value of the feature k in the
input, given that the input corresponds to category i.

Let us assume in the following sections of this chapter that exactly one
feature is evaluated in each iteration. This means that in iteration n, the
pattern recognition system knows the feature values xα1

, . . . , xαn
, where αk is

the index of the feature that has been evaluated in iteration k.

3.6.1 The bottom-up path

The function of the bottom-up path in the system is to compute the prob-
ability distribution of the categories, based on the observed feature values
xα1

, . . . , xαn
. Following constructivist ideas, we want to adapt our system’s

state so that it reconstructs what the system has observed from its envi-
ronment. This reconstruction is done using the stored reference patterns

27

Chapter 3 Theoretical foundation

g1, . . . , gN . The state of the system at a point in time is represented by the
probabilities of the categories at that point in time. We consider the observed
feature values properly reconstructed when for each evaluated feature αk, the
sum of the predictions g1,αk

, . . . , gN,αk
, weighted by the current probabilities,

is equal to the observed feature value xαk
. That means in iteration n, the

probability distribution Y (n) = (y1, . . . , yN) must satisfy the constraints2

N
∑

i=1

yigi,αk
= xαk

, k = 1, . . . n (3.23)

As the predictions gi,αk
can only take the values 0 and 1, for a given k we can

define the set of probabilities Yk := {yi | 1 ≤ i ≤ N and gi,αk
= 1} and rewrite

equation 3.23 as

∑

y∈Yk

y = xαk
, k = 1, . . . n (3.24)

If xαk
= 1, then the probabilities in Yk must sum up to 1 and those not

in Yk must all be 0. If xαk
= 0, then the probabilities in Yk must all be 0

and the others must sum up to 1. This means that in the binary model,
a category i must be assigned the probability 0 as soon as a feature value
xαk

with xαk
6= gi,αk

is observed. A consequence of this property is that
the binary model can only recognize an input pattern if the observed feature
values exactly match the feature values of one of the stored categories.

What probabilities must be assigned to the categories that have not been
eliminated by the observations? To draw valid conclusions, the probability
distribution Y (n) must be based solely on the observed feature values and
on further information the system has, but nothing must be interpreted into
this data. To achieve this, we must keep as much uncertainty as possible in
the category distribution and therefore choose a distribution with maximum
entropy. Consequently, if the system has no information beyond the observed
feature values, equal probabilities must be assigned to all categories that have
not been eliminated.

On the other hand, if the system has additional information, they must of
course be reflected by the category distribution. If, for example, the system
has learned the long-term probabilities ȳ1, . . . , ȳN of the categories (their prob-
abilities without any knowledge about feature values), the categories should
be assigned probabilities that are compatible with these long-term probabil-
ities. This means at least that if two categories i and j have both not been
eliminated by the observations and ȳi < ȳj , then the probabilities assigned
to these categories should satisfy yi(n) < yj(n). When we implement the ab-
stract model in a neural network, we assume for simplicity that all categories
are equally probable in the long term.

2We omit the index for the number of the iteration where the meaning is clear.

28

3.6 The binary pattern recognition model

3.6.2 The top-down path

The function of the top-down path is to choose the feature that is evaluated
in the next cycle, based on the current probabilities y1(n), . . . , yN(n) of the
categories. Of course we want our pattern recognition system to profit maxi-
mally from the evaluation of a feature. The profit is the amount of information
that the system gains from the observation. Choosing a feature that promises
the maximum possible information gain also leads to a maximum expected
reduction of the entropy of the category distribution.

In the binary model, only two cases can occur: either the evaluated feature
is observed in the input or not. The information content of these two possible
events is given by

I(xαn+1
= 0) = − logP (xαn+1

= 0 |xα1
. . . xαn

) and (3.25)

I(xαn+1
= 1) = − logP (xαn+1

= 1 |xα1
. . . xαn

) (3.26)

where P (xαn+1
= x∗ |xα1

. . . xαn
) is the probability that the feature αn+1

evaluated in the next cycle has the value x∗, given that the feature values
xα1

. . . xαn
have been observed in the previous cycles. These equations con-

tain the implicit assumption that the observed feature values are the only
information the system has about the input. We set p x∗

αn+1
:= P (xαn+1

=
x∗ |xα1

. . . xαn
). The expected information gain caused by the evaluation of

feature αn+1 is then

E(I(xαn+1
)) = −p 0

αn+1
log p 0

αn+1
− p 1

αn+1
log p 1

αn+1
(3.27)

This value is the entropy of the probability distribution (p 0
αn+1

, p 1
αn+1

), and
we know that uniform distributions have maximum entropy. To maximize
its expected information gain, the system must therefore choose to evaluate
a feature αn+1 that minimizes | p 1

αn+1
− p 0

αn+1
|, which means that it must

choose a feature for that occurrence and non-occurrence in the input are nearly
equally probable.

Unfortunately, the pattern recognition system cannot compute the probabil-
ity that a given feature occurs in the input. It can, however, make a reasonable
estimation of this probability by computing the sum of the predictions for the
feature, weighted by the current probabilities of the categories:

p1
αn+1

≈
N
∑

i=1

yigi,αn+1
(3.28)

Note that gi,αk
= gi,αl

for 1 ≤ k, l ≤ n for all categories i with yi > 0.
That means, all categories with probabilities greater than 0 make the same
predictions for all features evaluated up to iteration n. Using the estima-
tion in equation 3.28, the system must choose a feature αn+1 that minimizes
∣

∣

∣

∑N

i=1
yigi,αn+1

− 0.5
∣

∣

∣
to maximize its expected information gain. This is a

29

Chapter 3 Theoretical foundation

feature with minimal difference between the number of active categories that
predict the feature and the number of active categories that do not predict
the feature. In this sense, the feature αn+1 is chosen to be as independent as
possible from the already evaluated features α1, . . . , αn.

What behavior can we expect from this model? Under the assumption
that in the long term all categories are equally probable, so that ȳ1 = · · · =
ȳN , about half of the remaining categories can be eliminated in every cycle,
provided that a feature can be found for which | p 0

αn+1
−p 1

αn+1
| is small enough.

This is the case if for every subset of categories, there is a feature that occurs
in about half of the categories in this subset and not in the others. In this
ideal situation, the binary model behaves similar to a binary search algorithm.
The number of iterations required to eliminate all but one of the N categories
is then approximately log2 N .

3.7 The generalized model

In this section, we extend the domain of the feature values and the reference
patterns to real values from the interval [0, 1]. Most of the simplifications we
used in the preceding section are no longer applicable, and we must therefore
try to find a more general model.

As in the binary model, we assume that inputs are classified using a suitable
distance function. One possible definition of the distance d(p, q) of two input
patterns p = (p1, . . . , pM) and q = (q1, . . . , qM) is the Euclidean distance

d(p, q) :=
∑M

i=1
(pi − qi)

2, but other functions are also possible. The distance
function that is used to classify input patterns implicitly defines the meaning
of the predictions: they partition the input space so that a partition contains
all inputs that are classified into the same category. For our purpose, it is not
necessary to further interpret these values.

3.7.1 The bottom-up path

As in the binary model, we assume that to reconstruct the observed feature
values, the category distribution must satisfy the constraints

N
∑

i=1

yigi,αk
= xαk

, k = 1, . . . , n (3.29)

It is important to note that these equations are only one possibility to express
the abstract concept of reconstruction by a set of constraints. They correspond
to the idea that a reconstruction is a linear combination of stored concepts.
The concepts are represented by the predictions gi,k, and they are weighted
by the probabilities yi of the individual categories.

In contrast to the binary model, we can no longer simply set the proba-
bility of a category to 0 as soon as one of its predictions deviates from an

30

3.7 The generalized model

observed feature value. As we want to keep as much uncertainty as possible in
the category distribution, we must maximize its entropy with respect to the
constraints in equation 3.29. We have derived in section 3.5 that this leads to
the Gibbs distribution

yi =
exp (−

∑n

k=1
λkgi,αk

)

Z(λ1, . . . , λn)
(3.30)

with the partition function

Z(λ1, . . . , λn) =

N
∑

j=1

exp

(

−
n
∑

k=1

λkgj,αk

)

(3.31)

As long as the parameters λ1, . . . , λn are finite values, the probabilities of
the categories are always greater than zero. It is not always possible to find
parameters λ1, . . . , λn that satisfy the constraints in the equations 3.29. The
solvability of these equations depends on the stored reference patterns. To
be able to reconstruct an observed feature value xαk

, it must lie inside the
convex closure of the predictions g1,αk

, . . . , gN,αk
. This restriction expresses

the natural constructive requirement that a system can only reconstruct what
can be expressed in terms of its own experience.

In the following, we denote the entropy of the maximum entropy distri-
bution by S(x) = S(xα1

, . . . , xαn
) and the partition function by Z(λ) =

Z(λ1, . . . , λn). We have seen in the proof of proposition 3.4 that we can write
the entropy S(x) as

S(x) = log Z(λ) +

n
∑

k=1

λkxαk
(3.32)

This shows that the entropy S(x) and the function log Z(λ), which is called
the free energy in some contexts, are closely related. Equation 3.32 is actually
a Legendre transformation [29], which transforms between the dual coordinate
systems xα1

, . . . , xαn
and λ1, . . . , λn. Using the constraints in equation 3.29,

we can find an implicit equation for the observed feature values xα1
, . . . , xαn

:

xαk
=

N
∑

i=1

exp (−
∑n

k=1
λkgi,αk

)

Z(λ)
gi,αk

= −
1

Z(λ)

∂Z(λ)

∂λk

(3.33)

= −
∂ log Z(λ)

∂λk

31

Chapter 3 Theoretical foundation

Similarly, by differentiating S(x) with respect to the feature values, we get

∂S(x)

∂xαk

=

n
∑

l=1

∂ log Z(λ)

∂λl

∂λl

∂xαk

+

n
∑

l=1

∂(λlxαl
)

∂xαk

= −
n
∑

l=1

∂λl

∂xαk

xαl
+

n
∑

l=1

∂λl

∂xαk

xαl
+

n
∑

l=1

∂xαl

∂xαk

λl (3.34)

=

n
∑

l=1

∂xαl

∂xαk

λl

Under the assumption that the values of the evaluated features are mutually
independent (which is desirable, but will not be realizable in most applica-
tions), so that ∂xαl

/∂xαk
= δαlαk

, the parameters λk can be expressed as

λk =
∂S(x)

∂xαk

(3.35)

Equation 3.35 gives us an interpretation for the parameters λ1, . . . , λn: λk

determines how much the maximum entropy S(x) changes due to a change of
the feature value xαk

.

3.7.2 The top-down path

In the generalized model, the expected information gain E(I(xαn+1
)) caused

by the evaluation of the feature αn+1 becomes

E(I(xαn+1
)) =

∫ 1

0

pαn+1
(x) log pαn+1

(x) dx (3.36)

where pαn+1
is the probability density function for the values of the feature

αn+1, given the feature values xα1
, . . . , xαn

that have been observed in the
previous cycles. As in the binary model, E(I(xαn+1

)) reaches its maximum at
a uniform distribution pαn+1

. The problem is, however, that there is no way to
compute the probabilities pαn+1

(x) of the feature values from the stored pre-
dictions gi,k without making further assumptions. It might be possible to get
more analytical results by making assumptions about the distribution under-
lying the predictions. Such an approach, however, would be rather arbitrary,
as long as there is no real justification to favor one specific distribution.

A heuristic solution is to choose a feature k that maximizes the variance
E((g.,k − ḡ.,k)2) of the predictions g.,k with ḡ.,k = E(g.,k) =

∑N

i=1
yigi,k:

E((g.,k − ḡ.,k)2) =
N
∑

i=1

yi(gi,k − ḡ.,k)2 → max (3.37)

This heuristic should at least work well if the predictions gi,k for the feature

32

3.8 Some Remarks

values take only values from the set [0, ε] ∪ [1 − ε, 1] for a sufficiently small
constant ε.

3.8 Some Remarks

Obviously, the generalization of predictions and features to real values leads
to problems. In contrast to the binary model, we are not able to find an
explicit expression for the category distribution and the features that should
be evaluated. One reason is that for such a general model the parameters gi,k

are not sufficient to fully describe a category.
Because of these problems, we concentrate our further work on the binary

model. We have described in section 3.6.1 that this model only works for
inputs where the evaluated features exactly match the feature values of one
of the stored categories. This means that a pattern recognition system that
directly implements the binary model cannot compensate for noisy inputs or
errors in the recognition process — features that are required for most practical
applications. When we have developed a neural network implementation of the
binary model, we shall therefore try to extend it to overcome these limitations.
To be precise, the binary model already has some insensitiveness to noise in the
input: errors in the features that are not evaluated to recognize an input (which
can be the greatest part of the features) are completely ignored. Nevertheless,
we shall try to build a system that can also compensate for errors in the
evaluated features.

The model we have developed in this chapter has an important property
that distinguishes it from many other recurrent neural network models that
have been developed for pattern recognition tasks, including the associative
networks described and analyzed in Chapter 12 of [31] and the bidirectional
associative memories (also known as resonance networks) [18]. Using our ter-
minology, in these models the active categories activate (through the top-down
connections) the features they predict, which are the features that typically
occur in inputs corresponding to them. If we applied this strategy to our
model, the feature αn+1 evaluated in iteration n + 1 would be chosen so that

the weighted sum
∑N

i=1
yigi,αn+1

is maximized. The information gain that
can be expected from the evaluation of such a feature cannot be higher than
the one that can be expected by applying our strategy (as our strategy is

maximizing the expected information gain), and in most cases it will be lower.
These models therefore make only suboptimal use of the information that is
contained in the input.

33

Chapter 3 Theoretical foundation

34

Chapter 4

Neural network implementation

How should the neural network look like that implements the abstract model
we have developed in the preceding chapter? Before we come to this question,
we take another look at the anatomy of the natural neural networks that solve
pattern recognition tasks in the cortex. We should not expect that we can
directly derive a blueprint for our network implementation from this. But the
remarkably simple structure of these powerful networks will admonish us that
we should not let our own implementation become too complicated.

4.1 Further neuroanatomy

In Chapter 2, we have introduced some neuroanatomical knowledge on the
level of larger brain structures and their connectivity. In this section, we
scale our view by an order of magnitude and look at the specific neuron types
in the cortex and how the neurons are connected. Our hope is that this
can provide some inspiration for the neural network implementation of the
abstract model we have derived in Chapter 3. It is important to note that
the information given in this section have been simplified much and leave out
many neuroanatomical and functional details that are not important for our
purpose.

A neuron cell consists of the following externally visible components: the
cell body, called the soma, the dendrites, and the axon. The dendrites are
thin strings that form a widely branched tree-like structure. Located on the
surface of the dendrites are the synapses. These are the input sites of the
neurons where axon endings of other neurons can attach to. The dendrites
transport the input signals from the synapses to the cell body. Recent findings,
however, provide evidence that the dendrites may also be important for the
computational function of the neurons [4, 24, 25, 38]. Only the widely branched
structure of the dendrites makes it possible that a single neuron can receive
input from thousands of other neurons.

If two neurons are connected through a synapse, the neuron that provides
the input is called the presynaptic neuron, and the neuron that receives this
input is called the postsynaptic neuron. There are two kinds of synapses: exci-
tatory and inhibitory. Input from excitatory synapses increases the activation
of the postsynaptic neuron, and input from inhibitory synapses decreases it.

35

Chapter 4 Neural network implementation

Whether a synapse is excitatory or inhibitory is determined by the neurotrans-
mitter (the substance used to transmit the signal over the synapse) that the
presynaptic neuron produces. For most types of neurons it is assumed that
they form either excitatory or inhibitory synapses with postsynaptic neurons,
so that neuron types can be divided into excitatory and inhibitory types.

The axon is a thin string, usually much longer than the dendrites, with
branches at its end segment. It transmits the output signals of the neuron from
the cell body to the synapses that it forms with other neurons at the endings of
its axon branches. There are two types of axons, myelinated and unmyelinated,
which differ in the way they transport neuroelectrical signals. The myelinated
axons are covered by a sheath of myelin, which is composed of layers of Glia cell
membranes wrapped around the axon. In regular intervals, the myelin sheath
is interrupted, resulting in gaps called the Ranvier nodes. Neuroelectrical
signal travel much faster along myelinated axons than along unmyelinated
axons. The higher signal speed is especially important where information must
be transmitted over greater distances. For this reason, neurons that connect
distant regions of the brain, brain regions to muscles, or sensory organs to
brain regions, all have myelinated axons.

4.1.1 Types of neurons in the cortex

There are two main types of neurons in the cortex: pyramidal cells and in-
terneurons, which can be further divided into subtypes. Besides the neurons,
a number of other cell types can be found in the brain. These cells, which
are summarized under the name Glia cells, provide the infrastructure for the
neurons. For example, they take care of the nutrition of the neurons, they
build the myelin sheath around the neuron’s axons, and they form a skeleton
that props the neural structures.

Pyramidal cells are comparatively large neurons of the excitatory kind.
Their dendrites are separated into a basal and an apical group. The basal
dendrites spread out laterally and form connections in the same cortical layer
as the neuron or in adjacent layers; the apical dendrites rise to the superficial
layers and form connections there. Apical and basal dendrites together form
a pyramidal shape, which gave these neurons their name. A single pyrami-
dal cell can have a few thousand input synapses, which are located on the
dendrites on small bulges called spines. The output of the pyramidal cells
is transmitted locally through axon collaterals and to more distant locations
through a long myelinated axon.1The myelin sheath around the axon makes
it possible that pyramidal cells can transmit their output over a distance of
a few centimeters in the cortex, while unmyelinated axons are usually only a
fraction of a millimeter long. Most of the connections between cortical areas
and between the cortex and subcortical structures are therefore made up of

1There is also a subtype called small pyramidal cells that has no long myelinated axon.
The number of small pyramidal cells in the cortex, however, is much smaller than the
number of “real” pyramidal cells.

36

4.1 Further neuroanatomy

apical dendrites

myelinated axon

axon collaterals

soma

basal dendrites

Figure 4.1: A cortical pyramidal cell

long pyramidal cell axons. Figure 4.1 shows a schematic drawing of a cortical
pyramidal cell (note that the axon extends further down beyond the border of
the drawing).

The interneurons are smaller cells of the inhibitory kind. They have no
spines on their dendrites, so that their input synapses directly attach to the
dendritic surface. Their axons are much shorter than those of the pyrami-
dal cells and lack a myelin sheath; it is not required because they transmit
their output only locally. Figure 4.2 shows a schematic drawing of a cortical
interneuron.

It has been estimated that the excitatory pyramidal cells make up 60%–

soma

axon

dendrites

Figure 4.2: A cortical interneuron

37

Chapter 4 Neural network implementation

lower area

thalamic
thalamic
nucleus

nucleus

connections
ascending

connections
descending

higher area

III

VI

IV

II
I

V

Figure 4.3: Connections between two cortical areas

80% of all neurons in the cortex of mammalian brains [27]. This is especially
remarkable because in other brain structures, for example in the cerebellum,
there are usually much more inhibitory interneurons than excitatory cells.
That most of the neurons in the cortex are pyramidal cells means that the
majority of the cortical neurons has (through the long axon) connections to
neurons in other cortical areas. This supports the theory that the cortex works
in a very distributed manner.

4.1.2 Connections between cortical areas

The cortical areas can be ordered into lower areas, which are concerned with
more concrete sensory or motor concepts, and higher areas, which are con-
cerned with more abstract concepts. The relative functional level of two con-
nected cortical areas is also reflected in the structure of their connections. In
Chapter 2, we have already discussed Mumford’s theory of the cortical func-
tion. In one of his articles [27], he describes the following three pathways
between two connected areas A and B where area A has a higher functional
level than area B:

• The ascending pathway from area B to area A: Superficial pyramidal
cells in the layers II and III of area B send connections up to layer IV of
area A. As the incoming connections from the thalamus also terminate
in layer IV, it can generally be considered the layer where the input from
lower structures arrives. For this reason, layer IV is called the standard
input layer. In Mumford’s theory, the function of the ascending pathway
is to transmit the difference, called the residual, between the data coming
from the higher area A and the real input that arrives in area B from
lower structures.

38

4.1 Further neuroanatomy

• The standard descending pathway from area A to area B: Deep pyra-
midal cells in layer V of area A send connections down to the layers I
and VI of area B. The deep pyramidal cells, mainly in layer VI, are also
the point of origin of the area’s connections to the thalamus, so that the
layers V and VI can generally be considered the layers where the output
to lower structures originates. The function of the descending pathway
is to transmit a reconstruction of area B’s input data, which is based on
the state of area A. Mumford calls these reconstructions templates; in
our terminology, they would be called predictions.

• The extra descending pathway from area A to area B: If the functional
level of area A is only slightly higher than that of area B, then the
superficial pyramidal cells in the layers II and III of area A also send
connections down to the layers I and VI of area B. The function of this
pathway is to transmit a residual that area A sends to an even higher
area C also to the lower area B.

Figure 4.3 illustrates the connections between two cortical areas, as they are
described in the cited article. The small triangles show the pyramidal cells,
the arrows show their long axons, and the T-shaped lines going from the top
of the triangles upward show their apical dendrites that terminate in layer I.

In [30], Raizada and Grossberg describe a more detailed model of the neural
circuits in the thalamic nucleus LGN and the visual areas V1 and V2 of pri-
mates, which is based on the results of a large number of studies on macaque
monkeys. The authors propose that the processing of visual information in
these regions is based on small subcircuits, each with a well-defined functional
role. Two of these subcircuits, which can possibly be useful for our model, are
illustrated in the figures 4.4 and 4.5. The white-filled circles show excitatory
neurons, the black-filled circles show inhibitory interneurons, and the lines
with the T-shaped endings show the neuron’s axons. The subcircuits are:

• On-center, off-surround filter: Input from lower structures arrives in
layer IV along two routes. First, there is a strong direct connection
from the lower structure to the layer IV neurons. Second, there are
connections to layer VI neurons that transmit the signals up to layer
IV through a circuit with on-center, off-surround characteristic, which
means that at every input location the central signals are enhanced at
the expense of peripheral signals. The on-center, off-surround circuit has
a contrast and edge enhancing effect on the input. Because the direct
connection is stronger than the indirect one, however, the filter effect is
only modulatory and the direct input is determinant. Figure 4.4 shows
the on-center, off-surround circuit for input coming from the LGN to the
visual area V1.

• Folded feedback: Feedback coming from higher structures does not di-
rectly activate the input neurons in layer IV. Instead, connections from

39

Chapter 4 Neural network implementation

LGN

IV

VI

V1

Figure 4.4: On-center, off-surround circuit

I

folded feedback

IV

V2 VI

V
VI

apical dendrites

V1

Figure 4.5: Folded-feedback circuit

the deep layers of the higher structure synapse in layer I on the apical
dendrites of layer V pyramidal cells. These cells feed their input into
the on-center, off-surround path from layer VI to layer IV. This indi-
rect “folded” feedback has two important effects. First, because of the
filter effect of the on-center, off-surround path, the feedback enhances
the activity of neurons that support it at the expense of neighboring
neurons. Second, because the on-center, off-surround path is only mod-
ulatory, feedback can only support activation caused by input, but can-
not lead to activation without input. This prevents the feedback from
only confirming itself, which would lead to hallucinations in the system.
Figure 4.5 shows the folded feedback circuit for feedback coming from
the higher area V2 to the lower area V1.

In section 4.3.1, we shall see that the folded feedback subcircuit is realized
in the part of our network that selects the features to be evaluated. The
on-center, off-surround subcircuit is at least compatible with the part of our
network that activates the categories, which is described in subsection 4.3.2.

4.2 The neuron model

Numerous models of neurons and networks of neurons have been described in
the neural network literature, ranging from networks of simple binary thresh-

40

4.2 The neuron model

old gates studied first by Warren McCulloch and Walter Pitts [23] to the bio-
electrical model for the generation of action potentials in the giant nerve fibers
of squids by Alan Hodgkin and Andrew Huxley [14], who received the Nobel
Prize in Physiology or Medicine for this achievement in 1963, together with
John Eccles. The neuron model that we use in this work is very abstract and
simple, compared to the complex dynamic properties of real neurons that are
captured by some more biological models (a good reference for these models
is Part II of [8]).

We define a neural network N as a set of interconnected computational
units, called neurons, where the state of each unit at a given point in time
depends on the state of the network at earlier points in time. Depending on the
state of the network or other quantities, some of the network parameters can
change over time. This can be used, for example, to adapt the strengths of the
connections between the units or the sensitivity of the neurons to input signals.
Some researchers explicitly avoid the term neuron for the computational units
because they want to emphasize that the behavior of natural neurons is much
more complex than that of the modeled units [33]. Nevertheless, we use the
term neuron in this work, as it should be clear from the context what it refers
to.

In our model, the state of a neuron corresponds to the neuroelectrical activ-
ity of natural neurons. In response to input signals, natural neurons generate
local changes in the electrical potential of their cell membranes. These local
changes, which are called spikes or action potentials, move along the neurons’
axons to the synapses. When an action potential reaches a synapse, it triggers
the release of a neurotransmitter that transmits the signal to the postsynaptic
cell. Action potentials are the only means by which neurons can communicate
over greater distances. It is known today that neurons do not encode their
output solely in the frequency with which they are generating action poten-
tials, but also in their precise timing. To keep our model simple, however, we
ignore the timing of single action potentials and interpret the state of a neuron
in our model as the spike-count rate of the neuron, which is the number of
action potentials generated in a time interval of fixed length divided by the
length of that interval.

The input to a neuron is computed from the states of the neurons in the
network from which the neuron receives input. This includes the possibility
that a neuron receives input from itself through self-recurrent connections.
The input σi(t) to neuron i at time t is defined as

σi(t) :=

|N |
∑

j=1

wij(t)sj(t − ∆tij) (4.1)

|N | is the number of neurons in the network. sj(t) is the state of the neuron
j at time t. The weight wij(t) determines the strength of the connection from
neuron j to neuron i at time t. A positive weight means that the connection

41

Chapter 4 Neural network implementation

210-1-2

1

0,75

0,5

0,25

0

si(t)

σi(t)
210-1-2

1

0,75

0,5

0,25

0

si(t)

σi(t)

(a) sigmoid (b) piecewise linear

Figure 4.6: Neuron state functions

is excitatory; a negative weight means that it is inhibitory. If there is no
connection from neuron j to neuron i, the weight wij is set to 0. The delay
∆tij is the time that the signals need to travel along the connection from
neuron j to neuron i; usually, we set ∆tij := 1 for all connections. In this
work, we use only discrete time values. External input to the network is
provided by special input neurons, which have a fixed state and do not receive
input from other neurons.

The state of a neuron, as we understand it, depends on the input in the
following manner: If the sum of the input signals is below a threshold value,
the neuron produces no or only a very small output, which is called the resting
activity. Each neuron can have a different threshold value. If the input is above
this threshold, the activity of the neuron increases monotonic with the input
until a maximum activity is reached. If the input is above this saturation value,
the activity of the neuron remains at the maximum level. This behavior can be
modeled by using the classical sigmoid state function, which is applied in many
application-oriented neural network models (see for example [31], Chapter 7);
it is defined as

si(t) :=
1

1 + exp(−β (σi(t) − bi(t)))
(4.2)

bi(t) is the threshold value (also called the bias) of neuron i at time t; it defines
the input value where the neuron’s state is exactly 0.5. σi(t) is the input to
the neuron at time t, as defined in equation 4.1. The parameter β controls
the slope of si at σi(t) = 0. Figure 4.6 (a) shows a plot of the sigmoid state
function for β = 1 and bi(t) = 0.

Depending on the value of the parameter β, two interpretations of the sig-
moid state function in equation 4.2 are possible. If β is large (β � 1), then
si has a large slope at σi(t) = 0, and the state function can be interpreted as
a continuous version of the step function. In this interpretation, a neuron is
active if its input exceeds its threshold value, and inactive otherwise. If β is

42

4.3 Implementation of the binary model

small, then the state function can be interpreted as a continuous version of a
piecewise linear function of the neuron input, whose value is restricted to the
interval [0, 1].

When doing computer simulations, the use of a sigmoid state function turns
out to be problematic in some situations. For example, a neuron that receives
connections from many other neurons can be activated although all neurons
from which it receives input have only a very small activation. This is a
consequence of the property that the value of a sigmoid state function is always
greater than 0. Such side effects can sometimes hide the relevant effects that
we want to capture in a simulation. To avoid this, we shall sometimes directly
use step functions or piecewise linear functions to compute the state of the
neurons in our computer simulations. Figure 4.6 (b) shows a plot of the
piecewise linear state function with threshold value 0 and slope 1.

4.3 Implementation of the binary model

In the following sections, we build the components of a neural network that is
based on the theoretical foundation we have developed in Chapter 3. It is not
so crucial that the neural network implements every detail of the theoretical
model. Much more important is that the neural network shows the same qual-
itative behavior as the theoretical model without becoming too complicated.
The natural neural circuits have a remarkably simple structure (at least when
we consider their power and the huge number of neurons they are composed
of), and we should attach importance to keep this property in our network.
We begin with the implementation of the binary model (see section 3.6) where
the feature values and the predictions can take only the values 0 and 1. We
assume that the parameter β in the neuron model is large, so that the state
function is close to a step function. This means that at a given point in time,
a neuron can be either active or inactive.

In the description of the subcircuits of the network, we give conditions that
the parameters of the circuit must satisfy. Some of the conditions could be
weakened by introducing additional parameters and by considering special
cases. For example, in the category activation circuit (subsection 4.3.2), each
category neuron could have its own threshold value. When the parameters of
the network are developed in a learning process, such a differentiation should
happen automatically. When the network is constructed, however, it is desir-
able to keep the number of parameters small.

4.3.1 Feature evaluation

The first module we develop for our neural network is the subcircuit for the
evaluation of the features. This subcircuit has actually two functions: eval-
uating the features and storing their values. When a feature is selected for
evaluation, which is signaled by the activation of a select neuron, the circuit

43

Chapter 4 Neural network implementation

input

select

feature+

feature−

(bfeature−)

wselect

(bfeature+)

wselect
w+

input

w−
input

wselect

Figure 4.7: Feature evaluation circuit

must read the corresponding feature value. Each feature can have one or
more assigned select neurons, which are activated by a feature selection sub-
circuit (see section 4.3.3). Once a feature has been evaluated, its value must
be stored, so that it can be used in the following cycles without being read
again. In natural networks, the feature values are coming from sensory organs
or from other regions of the nervous system; in our network, we use special
input neurons to provide them.

Figure 4.7 shows the feature evaluation circuit (only one select neuron is
shown). The network contains this subcircuit once for every feature that can
be evaluated. In the figure, the white-filled circles show excitatory neurons, the
black-filled circles show inhibitory neurons, and the lines with the T-shaped
endings show the neuron’s axons. The variable names inside parentheses be-
neath the neuron names are the threshold values of the corresponding neurons.
The variable names at the connections are the strengths of these connections.
The default threshold value is 0; the default connection strength is 1 for exci-
tatory connections and −1 for inhibitory connections.

In the feature evaluation circuit, we find again the indirect, “folded” feed-
back we have described in subsection 4.1.2: Feedback from higher structures
does not directly activate the feature neurons. Instead, the feedback activates
special select neurons, which then trigger the evaluation of the selected fea-
tures. This prevents the categories from confirming themselves through their
own feedback.

To function properly, the parameters of the feature evaluation circuit must
satisfy the following conditions:

• The feature+ neuron is activated if the feature has been selected (at least
one associated select neuron is active) and the feature has been detected

44

4.3 Implementation of the binary model

in the input (the corresponding input neuron is active):

bfeature+ < w+

input + wselect (4.3)

• The feature+ neuron cannot be activated if the feature has not been
selected or the feature has not been detected in the input:

w+

input < bfeature+ (4.4)

nselectwselect < bfeature+ (4.5)

nselect is the maximum number of select neurons assigned to this feature
that can be active at the same time.

• The feature− neuron is activated if the feature has been selected and the
feature has not been detected in the input:

bfeature− < wselect (4.6)

• The feature− neuron cannot be activated if the feature has been detected
in the input:

w−
input + nselectwselect < bfeature− (4.7)

It is clear that either the feature+ neuron or the feature− neuron in the sub-
circuit can be active, but not both. Once a feature+ neuron or a feature−

neuron has been activated, the self-recurrent connections with weight wselect

guarantee that it remains active.
The circuit in figure 4.7 detects both, the occurrence and the non-occurrence

of a feature in the input. Occurrence is signaled by an activation of the feature+

neuron; non-occurrence is signaled by an activation of the feature− neuron. It
is unlikely that in natural circuits the non-occurrence is detected for all features
because only a small part of all features can occur in the input at one point in
time. Natural circuits, however, can compensate for this loss of information
by the tremendously large number of different features they can detect.

After a feature has been evaluated, its value is stored in the self-recurrent
connections of the feature neurons. In natural circuits, feature values may be
stored using a different mechanism. Neurons that have a very slow activation
decay are, for example, a conceivable alternative.

4.3.2 Category activation

The subcircuit for the activation of the categories must activate those cat-
egories whose predictions match all evaluated feature values and deactivate
all other categories. In our model, each category is represented by a single
category neuron. If a feature k is predicted by a category i, that is, gi,k = 1,

45

Chapter 4 Neural network implementation

feature+

feature−

w+

feature

w+

feature

categoryi

(bcategory)

w−
feature

categoryj

(bcategory)

w−
feature

Figure 4.8: Category activation circuit

then there are an excitatory connection from the feature+ neuron k to the
category neuron i and an inhibitory connection from the feature− neuron k to
the category neuron i. If a feature k is not predicted by a category i, that is,
gi,k = 0, then there are an inhibitory connection from the feature+ neuron k to
the category neuron i and an excitatory connection from the feature− neuron
k to the category neuron i. Figure 4.8 shows the category activation circuit for
one feature neuron and two category neurons i and j; category i predicts the
feature, and category j does not predict the feature (gi,k = 1 and gj,k = 0).

The parameters of the category activation circuit must satisfy the following
conditions:

• A category neuron is activated if and only if it receives at least one
excitatory input and no inhibitory input:

w−
feature + (nfeature − 1) w+

feature < bcategory < w+

feature (4.8)

nfeature is the maximum number of different features that can occur in
the input at the same time.

Thus, a single matching feature in the input can be sufficient to activate a
category. On the other hand, a single non-matching feature is sufficient to
prevent the activation of a category.

In subsection 4.1.2, we have described that the bottom-up connections in
the cortical areas V1 and V2 work as on-center, off-surround filters, which
have a contrast and edge enhancing effect on the visual input. Although this
effect is specific to visual signals, similar filters are possibly applied to the
data processed in other cortical regions. The category activation circuit in
our network model is at least compatible with this neuroanatomical finding.
If we assume that a feature neuron is not connected to all category neurons,
but only to a small, locally constrained subset of neurons, we get structures
in our network that are similar to the filter structures in V1 and V2. Such
locality constraints are biologically very plausible and can even been applied

46

4.3 Implementation of the binary model

categoryj

nselect

(bnselect)
categoryi

wnselect

select

(bselect)

Figure 4.9: Feature selection circuit, implementation 1

to build network structures. The proposition that the connections between
feature neurons and category neurons in our model correspond to the filter
structures observed in the cortex is, however, very speculative.

4.3.3 Feature selection

The feature selection subcircuit selects the features that are evaluated in the
next iteration. To select those features that maximally reduce the uncertainty
in the category distribution, this subcircuit must estimate the information
gain that can be expected from the evaluation of each feature. In contrast to
the abstract model where we assumed for simplicity that exactly one feature
is evaluated in every iteration, our feature selection circuit should select all
features whose expected information gain is greater than a certain threshold
value. The reason for this deviation from the abstract model is that selecting
exactly one feature in every iteration is difficult to realize in a neural network;
besides this, it is hard to believe that the features are evaluated in a strict
sequential manner in natural neural networks.

We give two alternative implementations for this subcircuit. The first one
is directly derived from the abstract model. It selects all features for which
the difference between the number of active categories that predict the feature
and the number of active categories that do not predict the feature is less than
a certain constant. Figure 4.9 shows the first implementation for two category

neurons i and j and a single select neuron; category i predicts the feature,
and category j does not predict the feature. In this implementation, each
feature neuron has exactly one assigned select neuron. If a category i predicts
a feature k, that is, gi,k = 1, then there are excitatory connections from the
category neuron i to the nselect neuron k and from the category neuron i to the
select neuron k. If a category i does not predict a feature k, that is, gi,k = 0,
then there are inhibitory connections from the category neuron i to the nselect

neuron k and from the category neuron i to the select neuron k. All these
connections have the same strength.

The parameters of the first implementation of the feature selection circuit

47

Chapter 4 Neural network implementation

must satisfy the following condition:

• Let d be the difference between the number of active categories that
predict the corresponding feature and the number of active categories
that do not predict the corresponding feature. Then, the select neuron
is activated if and only if dmin < d < dmax:

bselect = dmin (4.9)

bnselect = dmax (4.10)

wnselect + bnselect < bselect (4.11)

The problem with the first implementation of the feature selection circuit is
that the threshold values bselect and bnselect are constant during the recognition
process. If the interval (bselect, bnselect) is too small, the difference between the
number of active categories that predict a feature and the number of active
categories that do not predict a feature can get outside this interval for all
features. When this happens, no new feature is selected although there can
still be more than one active category. On the other hand, if the interval is too
large, too many features are evaluated when the number of active categories
decreases. The situation could be improved by adapting the range that is
defined by the threshold values bselect and bnselect depending on which categories
are active. This, however, would require a neural circuit which is much more
complicated.

The second implementation, which is shown in figure 4.10, does not have this
problem. In this implementation, each select neuron has an assigned category
subset, from which it receives excitatory connections. The select neuron is
activated when all categories in this subset are active. In contrast to the first
implementation, there is no one-to-one correspondence between features and
select neurons. Instead, each select neuron selects the feature whose evaluation
contains the greatest amount of information under the assumption that the
categories in the assigned category subset are active. This is a feature for which
the difference between the number of categories in the subset that predict the
feature and the number of categories in the subset that do not predict the
feature is minimal. Thus, a feature can have zero, one, or more assigned select

neurons.
The parameters of the second implementation of the feature selection circuit

must satisfy the following condition:

• A select neuron is activated if and only if all category neurons from which
it receives input are active:

ncategory,k − 1 < bselect,k < ncategory,k (4.12)

ncategory,k is the number of category neurons in the category subset as-
signed to the select neuron k.

48

4.3 Implementation of the binary model

selectu
(bselect,u)

selectv
(bselect,v)

categoryi

categoryj

categoryk

Figure 4.10: Feature selection circuit, implementation 2

A question that arises when using this implementation is how to choose the
category subsets that are assigned to the select neurons. As the number of
subsets grows exponentially with the number of categories, it is certainly not
a good idea to have a select neuron for every possible subset. A better ap-
proach is to assign one select neuron to each pair of categories, resulting in
N(N − 1)/2 select neurons for N categories. If this approach is applied, the
resulting network needs only 2 iterations to recognize any input pattern that
corresponds to one of the stored categories. The reason is that for each pair
of categories that are active after the first iteration, a feature which separates
this pair is selected and evaluated in the second iteration. As this is done for
all pairs of active categories, at most one category can be active in the network
after the second iteration.

4.3.4 Initial activation and synchronization

The network we have described so far requires that some category neurons
are already active, so that features can be selected for evaluation. There are
different possibilities to create an initial activation of the category neurons.
When the network has performed a pattern recognition task before and a new
input is presented to it, the simplest solution is to use the category activation
from the previous task. This requires that there are enough category neurons
active to activate some select neurons. In larger, more realistic networks this
will normally be the case. Another possibility is to explicitly activate some
select neurons. These neurons should select the features with the highest
expected information gains resulting from their evaluation, averaged over the
categories. The activation of these select neurons can be triggered by an
external signal or by a special category neuron that represents the “unknown”
category.

Although in principle the neurons in natural neural networks can all work in
parallel, cortical areas have been found where the neural activity oscillates with
specific frequencies [9]. This can be an indication that there are mechanisms
in the cortex that serialize and synchronize the activity of groups of neurons.
In [27], Mumford suggests that the claustrum, a small subcortical structure

49

Chapter 4 Neural network implementation

which is connected to the whole cortex, plays a role in the serialization of
bottom-up and top-down processing between connected cortical areas. In our
network model, we assign the neurons to different neuron groups. All neurons
in the same group work synchronously, which means that they all compute
their states at the same time step. The state computation of the different
neurons groups is serialized. In a single iteration, they are activated in the
following order: feature neurons, category neurons, nselect neurons (if the first
implementation of the feature selection circuit is used), select neurons.

4.3.5 Network size

In the computer model, a single neuron can form excitatory as well as in-
hibitory connections with postsynaptic neurons. This means that some in-
hibitory neurons and their connections in the described model can be replaced
by inhibitory connections in the computer model, which reduces the number
of neurons and connections. If we ignore the mechanism that generates the
initial activations, a network for M features and N categories that uses the
first implementation of the feature selection circuit (one select neuron for every
feature) contains 5M + N neurons and 7M + 4MN connections. A network
that uses the second implementation of the feature selection circuit (one select

neuron for every pair of categories) contains 3M + (N 2 + N)/2 neurons and
4M + 2MN + 2N2 − 2N connections.

4.4 Simulation of the binary model

Our binary network model is now complete, so that we can test it with a
practical example. The task of the network is to recognize two-dimensional
patterns of black and white pixels. As we have already described in section 3.2,
the features that are extracted from the input are small subpatterns of 3×3
pixels. Because we use only patterns whose center pixel is set, there are 28 =
256 different features. To make the recognition process translation invariant,
we ignore any position information and detect only whether a feature occurs
in the input or not.

The figures 4.11 and 4.12 show two sets of 8×8 pixel images that we use
to test the network model. The images have been created in this small size
to make it easier to analyze the behavior of the network. Because the binary
model is unable to compensate for noise or other variations in the input,
the same image data is used to build a network and to test its recognition
capabilities.

The terms we have defined in the description of the abstract model in sec-
tion 3.6 have the following meaning in this example: An input pattern p is
a vector p = (x1, . . . , x256) of 256 elements. Its ith element is 1 if the 3×3
pixel pattern that corresponds to feature i occurs in the image that defines

50

4.4 Simulation of the binary model

Figure 4.11: Digit images

Figure 4.12: Letter images

the pattern, and 0 if not. The reference patterns are the input patterns that
are defined by the images in the figures 4.11 and 4.12.

From the image data, two networks have been created, one for the recog-
nition of the digit images, one for the recognition of the letter images. Both
networks use the second implementation variant of the feature selection circuit
(one select neuron for each pair of categories) because the first variant does
not work well in the binary model; we have explained the reasons in subsec-
tion 4.3.3. A step function is used to compute the state of the neurons. In the
network, there is one select neuron for each pair of categories; each of these
neurons selects a feature that occurs in one category, but not in the other.
The network for the recognition of the digit images contains 823 neurons and
6324 connections; the network for the recognition of the letter images contains
1119 neurons and 15636 connections.

As predicted in the description of the feature selection circuit, both networks
need only 2 iterations to recognize an input pattern. Of the 256 features, the
digit network evaluates 5 features per input and 8 different features to recog-
nize all digit images. The letter network evaluates 11–13 features per input
and 17 different features to recognize all letter images. This shows that most
of the possible 256 features are irrelevant for the recognition of the patterns in
our sample data sets. If this property is also valid for more complex patterns,
which is a reasonable assumption, this justifies our approach to evaluate the
features selectively. The fact that most of the features are never evaluated
could be used in a learning process to remove many unnecessary neurons and
connections from the network to considerably reduce the network’s complexity.
In our example, the size of the digit network could be reduced to 79 neurons
and 372 connections, and the size of the letter network could be reduced to
402 neurons and 2252 connections.

Figure 4.13 illustrates the recognition process for a single input in more
detail. The input that is presented to the network is the image of the digit

51

Chapter 4 Neural network implementation

Input

Iteration 1

Evaluated features:

#68

Categories:

Iteration 2

Evaluated features:

#0 #1 #2 #49

Categories:

Figure 4.13: Recognition of the image of the digit “0” in the binary model

52

4.5 Implementation of an extended model

“0”. In the first iteration, the feature #68 is selected and evaluated.2 In our
example network, the selection signal for this feature is generated externally,
but it could also be generated by a special “unknown” category, which is
activated when all other categories are inactive. The reason that the feature
#68 is selected first is that it occurs in 5 of the 10 categories, so that a
maximum information gain can be expected from its evaluation. Feature #68
occurs in the input; it activates the categories “0”, “6”, “7”, “8”, “9”, and
deactivates the other categories (inactive categories are shown in gray). In
the next iteration, for each pair of active categories one feature is selected
and evaluated. As some pairs of categories select the same feature, only 4
additional features are evaluated, namely #0, #1, #2, and #49. After the
evaluation of these features, only category “0” is still active.

It is even possible to further reduce the number of features that need to be
evaluated to recognize an input pattern. In the construction of the feature
selection circuit, we required only that each pair of categories selects a feature
that separates both. For each pair of categories there is usually more than
one feature that separates them. Therefore, to lower the number of evaluated
features, pairs of categories should select features that also separate as many
other pairs as possible.

4.5 Implementation of an extended model

Although our binary network model works well, it has the limitation that it
can only be used to classify inputs where the evaluated features exactly match
those in one of the stored categories. For many applications, however, it is
required that a pattern recognition system is able to compensate for small
errors in the input. In Chapter 3, we have seen that the attempt to generalize
our abstract model has lead only to very limited results. In particular, it is
unclear how the extension of the abstract model could be implemented in a
neural network.

In the binary model, there are three elements that can be extended from
binary values to real values from the interval [0, 1]: the feature values in the
input x1, . . . , xM , the predictions gi,k, and the probabilities y1, . . . , yN of the
categories. Of course the probabilities are also real values in the binary model.
But as we assumed that all categories are equally probable in the long term, a
category could have only two possible values at every point in time, namely 0
or 1/n, where n is the number of categories whose probability is greater than
0 at that point in time. For this reason we can say that the probabilities are
also “binary” values in the binary model.

Extending the feature values x1, . . . , xM to real values is not really necessary
for our purpose because in most situations, it is enough to know that a feature
value is in a certain range. Thus, a real-valued feature can be replaced by

2The identifiers of the features are computed by interpreting their pixel patterns as binary
numbers.

53

Chapter 4 Neural network implementation

in

out−

(bout−)

wout−

out+

(bout+)

Figure 4.14: Range detection circuit

a number of binary features that represent different ranges in the original
feature.

Figure 4.14 shows a neural circuit that detects a range of feature values.
The state of the in neuron is the input to the circuit; the state of the out+

neuron is used as the state of the whole circuit. We have already used such a
circuit in the binary network model in the first implementation of the feature
selection circuit. The range that this circuit is sensitive for is determined by
the threshold values bout− and bout+ . We assume that the connection from the
out− neuron to the out+ neuron is much shorter than the other connections,
so that we can neglect its delay.

The state function of such a range detection circuit depends on the state
functions of the individual neurons and on the strengths of their connections.
If the neurons’ state functions are step functions (as in the binary model),
the resulting state function of the circuit has the form of a gate function; if
they are sigmoid functions, the state function of the circuit is similar to a
Gauss function. Figure 4.15 (a) shows the state function of a circuit where the
neurons have sigmoid state functions; figure 4.15 (b) shows the state function
of a circuit where the neurons have piecewise linear state functions. Note that
the graphs of the functions are not symmetric with respect to a vertical line.
The reason is that the inhibitory connection from the out− neuron to the out+

neuron must be strong enough to bring the state of the circuit to 0 when the
input exceeds the upper bound of the circuit. It is also possible to build a
range detection circuit with a symmetric state function, but such a circuit
needs two additional neurons, which seems to be too much for this task.

Extending the predictions gi,k can be useful if the association strengths be-
tween features and categories vary among the different features. For example,
let us assume that the categories represent hand-written character images.
Usually, there are variations in the writing of each character. Because of these
variations, some features may occur in an input corresponding to a given
character, while other features must or must not occur to make the input

54

4.5 Implementation of an extended model

2,51,250-1,25-2,5

0,8

0,6

0,4

0,2

0

sout+

sin
210-1-2

1

0,75

0,5

0,25

0

sout+

sin

(a) sigmoid (b) piecewise linear

Figure 4.15: State functions of a range detection circuit

classifiable. To capture these differences, we define the weights ci,k as

ci,k :=
2ni,k

|T |
− 1 (4.13)

where |T | is the number of patterns in the training set T , and ni,k is the
number of patterns from the training set that are examples for category i
and contain feature k. The absolute value of the weight ci,k measures the
association strength between feature k and category i. Features k with ci,k = 1
(meaning that feature k must occur in inputs of category i) or ci,k = −1
(meaning that feature k must not occur in inputs of category i) contribute the
maximum amount of information to the decision whether the input belongs
to category i or not. On the other hand, features k with ci,k = 0 contribute
no information to this decision. Based on the weights ci,k, we get the “old”
predictions by setting gi,k := 0 if ci,k ≤ 0, and gi,k := 1 if ci,k > 0.

For our purpose, the most important extension of the binary model is the
extension of the category probabilities y1, . . . yn. By allowing the categories
to have probabilities other than 0 and 1/n, where n is the number of cate-
gories with non-zero probabilities, the pattern recognition system can tolerate
deviations from the stored reference patterns. When the prediction gi,k of a
category i for a feature k deviates from the value xk that has actually been
observed for this feature, the probability of the category i is not necessarily
set to 0. Instead, the probability yi is reduced by an amount that depends
on the association strength between category i and feature k. The aim of this
process is to assign the highest probability to the category whose predictions
have the smallest weighted deviation (weighted by the |ci,k|) from the feature
values that have been observed.

In the following subsections, we describe the differences of the extended
network model to the binary model. If not stated differently, we assume that
the state functions of the neurons are piecewise linear functions with threshold
value 0 and slope 1.

55

Chapter 4 Neural network implementation

(1.5)

(0.5)

input

select

feature+

feature−

Figure 4.16: Feature evaluation circuit

4.5.1 Feature evaluation

In the binary network model, the threshold values of the feature+ and feature−

neurons have to be large enough to prevent these neurons from being activated
solely by select neurons. To still allow the input signals to activate the feature

neurons, the positive or negative input signals are amplified by the relatively
large weights of the connections between input and feature neurons. In the
extended model, however, this approach does not work. As our aim is to
tolerate errors in the input, these errors would be amplified as well, which
is certainly not what we want.3A solution to this problem is to use only one
select neuron for each feature. If there is more than one signal that can select
a feature, these signals must be collected by a single select neuron. As a
consequence, we can set the weights and thresholds of this subcircuit to fixed
values. Figure 4.16 shows the feature evaluation circuit of the extended model.

4.5.2 Category activation

The category activation circuit in the binary network model has to activate
those category neurons whose predictions match all observed feature values,
and deactivate all other category neurons. In the extended model, the cir-
cuit should guarantee the following behavior: if the weighted deviation of the
predictions of a category from the observed feature values is greater for a cat-
egory i than for a category j, then category i is assigned a lower probability
than category j, which means that the activation of category neuron i must
be lower than that of the category neuron j. The weighted deviation di(n) of

3We use the term “error” here for all deviations of the input patterns from the reference
patterns stored in the system, even though they need not be errors in the strict sense of
the word.

56

4.5 Implementation of an extended model

(0.5)

...

...

feature±k categoryi
±ci,k/nfeature

Figure 4.17: Category activation circuit

the predictions of category i from the feature values observed in the iterations
1, . . . , n is defined as

di(n) :=

n
∑

k=1

|ci,αk
| d(xαk

, gi,αk
) (4.14)

where d(xk , gi,k) := 1 if xk 6= gi,k and d(xk , gi,k) := 0 if xk = gi,k (as described
above, the predictions gi,k and the feature values xk remain binary values in
the extended model).

Figure 4.17 sketches a circuit that realizes the desired behavior (inhibitory
neurons are replaced by inhibitory connections). Every feature neuron is con-
nected to every category neuron. The strength of the connection from the
feature+neuron k to the category neuron i is set to ci,k/nfeature; the strength
of the connection from the feature− neuron k to the category neuron i is set to
−ci,k/nfeature. The constant nfeature should be set to a value not less than the
maximum number of features that must be evaluated to identify an input.

A possible extension of the circuit shown in figure 4.17, which can be useful
in some situations, is the introduction of local or global competition between
the categories. This can be done by inserting inhibitory connections either
between all category neurons, or between local subsets of category neurons. We
shall see in the simulations how this influences the behavior of the network.

4.5.3 Feature selection

As we have already seen in section 3.7.2, the top-down path is the part of the
model that is most difficult to generalize. The reason is that to determine
whether a feature is to be selected or not, we have to estimate the expected
information gain resulting from its evaluation.4 Without making further as-
sumptions, however, it is very hard to find a reasonable estimation for this
value. Therefore, we simply use the two implementations of the feature eval-

4As the neurons’ states can take all values from the interval [0, 1] in the extended model,
we cannot really say that a feature is “selected” by this circuit. Its task can more
appropriately be characterized as amplifying some features and attenuating others.

57

Chapter 4 Neural network implementation

(bnselect)

nselectk

selectk

categoryi

...

...

(bselect)

wnselect
1/bci,kc

Figure 4.18: Feature selection circuit, implementation 1

uation circuit that we have developed for the binary model and see if we can
do something useful with them.

The first implementation of the binary feature selection circuit estimates
the probability that the feature k occurs in the input by the weighted sum
∑N

i=1
yigi,k and selects all features for which this value is in a certain fixed

interval. In the extended model, the probability pk that the feature k occurs
in the input can be estimated as

pk ≈
N
∑

i=1

yic̃i,k, c̃i,k = (ci,k + 1)/2 (4.15)

It is important to note that the dependencies between the features are com-
pletely ignored by the estimation in equation 4.15. To take the dependencies
into account, however, we had to introduce additional parameters into the
model, which is something we want to avoid.

The estimation 4.15 suggests that the feature selection circuit should se-

lect features k that minimize
∣

∣

∣

∑N

i=1
yici,k

∣

∣

∣
. On the other hand, the circuit

should favor features with larger absolute weights because they contribute
more information (in the sense that we have described above at the begin
of section 4.5); this can be achieved by selecting features k that maximize
∑N

i=1
yi|ci,k|. How can these two objectives, minimizing

∣

∣

∣

∑N

i=1
yici,k

∣

∣

∣
and

maximizing
∑N

i=1
yi|ci,k|, be integrated in the circuit? Assuming that we want

to keep the structure of the circuit from the binary model (otherwise we could
be tempted to create a more complex circuit), we can only adapt the weights
of the top-down connections. A heuristic approach to integrate the two objec-

tives is to select features that minimize
∣

∣

∣

∑N

i=1
yi/bci,kc

∣

∣

∣
, where bci,kc := ci,k if

|ci,k| > ε, bci,kc := ε if 0 ≤ ci,k ≤ ε, and bci,kc := −ε if −ε ≤ ci,k < 0 for some
small ε > 0. This can be achieved by setting the weight of the connection
from the category neuron i to the select and nselect neurons k to 1/bci,kc and

58

4.6 Simulation of the extended model

...

selectk

categoryi

categoryj

...

0.5

(0.5)

(0.5)
(0.5)

preselectk,1

preselectk,n

Figure 4.19: Feature selection circuit, implementation 2

setting the neuron’s threshold values so that they satisfy bselect < 0 < bnselect.
Of course the problems with the fixed interval [bselect, bnselect] remain in this
implementation. Figure 4.18 shows the resulting circuit.

The second implementation of the feature selection circuit differs from the
one in the binary model in two aspects. First, there is only a single select

neuron for every feature. If more than one pair of categories selects the same
feature, then for each of these pairs, an additional preselect neuron is inserted
into the path from the category neurons to the select neuron. Thus, the se-

lect neuron collects the signals from all pairs of category neurons that select
the corresponding feature. Figure 4.19 shows the feature selection circuit for
feature k, which is selected by the category pair (i, j) and n − 1 other pairs.

The other aspect where the circuit for the extended model differs from the
one in the binary model is how the feature is determined that is selected by
a pair (i, j) of categories. In the binary model, it was sufficient to choose any
feature k with gi,k 6= gj,k. In the extended model, the category pair (i, j)
should select a feature for which the predictions of i and j are maximally
different, that is, a feature k which maximizes |ci,k − cj,k|.

4.6 Simulation of the extended model

As in the binary model, we use computer simulations to examine whether
the neural circuit we have proposed in the preceding section actually works
as expected. To test the different aspects of the circuit we use the same
task and the same image data as in our simulations of the binary circuit
in section 4.4. It should be noted that to make the results of the different
experiments easily comparable, we repeatedly show state traces that are based
on the same input data. Of course, the results that are described in the text
are based on experiments with many different inputs.

59

Chapter 4 Neural network implementation

(a) Implementation 1 (b) Implementation 2

Figure 4.20: States of the category neurons during the recognition of the image
of the digit “0” using different feature selection circuits

4.6.1 Implementation of the feature selection circuit

As a first experiment, we compare the two implementation alternatives for the
feature selection circuit. To see which alternative works better, two networks
have been created from the digit image data. Figure 4.20 shows how the states
of the 10 category neurons develop over 8 iterations when the image of the digit
“0” is used as input; the other inputs produce similar curves.

In this experiment, the category neurons with the strongest activations al-
ways corresponded to the categories that the input belonged to. This means
that both implementations of the circuit were able to correctly identify all pre-
sented inputs. In the diagrams, we can see that the circuits need only about
2–3 iterations to determine the category of the input. The different shapes of
the state curves can be explained as follows:

• Using implementation 1, the circuit collects nearly all of its information
from the input in the first 2 iterations. If we trace the states of the
select neurons, we see that in the first two iterations, a relatively large
number of features is selected (25–31 in the example), but only very
few of the select neurons have a strong activation (states greater than
0.7). After the second iteration, none of the select neurons has a state
greater than 0.2, which means that no more features are selected and
evaluated. The reason behind this behavior is that the interval defined
by the threshold values of the circuit’s select and nselect neurons cannot
be adapted during the recognition process.

• Using implementation 2, the circuit evaluates less features (6–9 in the
example) than using implementation 1. In every iteration, the states of

60

4.6 Simulation of the extended model

(a) Global competition (b) Local competition

Figure 4.21: States of the category neurons during the recognition of the image
of the digit “0” using different competition strategies

some select neurons are strengthened. Thus, using implementation 2,
the circuit collects some information from the input in every iteration.

During the simulations, no set of parameters could be found for which the
circuit using implementation 1 for feature selection did not show the problem
described above. Additionally, implementation 1 turned out to be very sensi-
tive to the exact parameter values. For example, the relation of the strengths
of the feature-category connections to the interval defined by the select and
nselect thresholds must be chosen carefully to result in a working circuit. Im-
plementation 2, on the other hand, is relatively insensitive to the parameter
values. The problem with this implementation, however, is that it is not so
easy to decide which feature should be selected by a given pair of categories
when there is more than one possibility. We shall see below in subsection 4.6.3
how this decision can affect the performance of the network.

4.6.2 Competition between the categories

In section 4.5.2, we have mentioned that it can be a useful strategy to introduce
competition between the categories. We can distinguish between two forms:
global and local competition. Global competition means that every category
competes with every other; local competition means that only subsets of cat-
egories compete. In the network model, such a competition strategy can be
realized by inserting inhibitory connections between the competing category

neurons.
Figure 4.21 shows the results of the same experiment as in the preceding sub-

section, with the difference that additional inhibitory connections have been

61

Chapter 4 Neural network implementation

Figure 4.22: Some manually changed digit images

inserted between the category neurons. The network was built using implemen-
tation 2 of the feature selection circuit. The left diagram shows what happens
when inhibitory connections are inserted between all category neurons. First,
we can see that the relative distance between the states of the neurons with
the stronger activations and the ones with the weaker activations is increased,
compared to the situation without competition as shown in figure 4.20 (b).
Second, the states of the neurons with weaker activations remain on a con-
stant low level over the iterations, whereas without competition the states of
all neurons increased. At least the first effect is quite useful because it allows
a better separation of the most probable hypotheses from the less probable
ones. The right diagram shows that this effect also occurs when there is only
local competition between the categories. To produce this diagram, inhibitory
connections have been inserted only between neighboring category neurons.

4.6.3 Inputs that contain errors

In the preparation of this work, many experiments have been carried out
to analyze how the network behaves in the presence of inputs that deviate
from the predictions of all stored categories. The desired behavior in such a
situation would be that the input is assigned to the category whose predictions
have the smallest difference to the features in the input. To test the network,
specific errors have been manually added to the digit and letter images from
section 4.4. Figure 4.22 shows some of the changed digit images that we used
in the simulations. It should be kept in mind that because we do not evaluate
individual pixels in the input but overlapping subpatterns, changing a single
pixel can result in more than one changed feature in an input pattern (actually,
a single pixel can directly influence up to 9 different features).

We begin with a network that uses implementation 1 of the feature selection
circuit. Figure 4.23 shows the states of the category neurons in response to
modified images of the digits “0” and “4”. When we compare these state traces
with the one in figure 4.20 (a), we see that the network behaves very similar
to the situation where the input contains no errors. The only difference is that
if the input contains errors, the absolute values of the states of the category

neurons are smaller. This behavior is consistent with our expectations, as an
input that deviates from the predictions of all stored categories must be rated
lower than an input that fully matches the predictions of a category. The
most important result of this experiment is that for all analyzed examples
the network behaved as expected and assigned the highest probability to the
category whose predictions had the smallest difference to the input.

62

4.6 Simulation of the extended model

(a) Digit “0” (b) Digit “4”

Figure 4.23: States of the category neurons during the recognition of modified
images of the digits “0” and “4” using implementation 1 of the
feature selection circuit

For networks that use implementation 2 of the feature selection circuit, the
situation is not so clear. As we have mentioned before, the performance of
such a network depends on the concrete features that are selected by the
category pairs. The problem arises when for a pair (i, j) of categories there
is more than one feature k that maximizes |ci,k − cj,k|, a situation that can
occur rather frequently. As the connections are not allowed to change during
the recognition of an input, it must be decided during the construction or
development of the network which features are then selected.

Figure 4.24 shows what can happen when a naive strategy is applied to
determine the feature that is selected by a pair of categories. The network
was built so that whenever there was more than one feature for which the
predictions of two categories were maximally different, the one with the small-
est index was chosen. This works well for inputs without errors, but it fails
for some inputs that deviate from the predictions. An example for which the
recognition fails is shown in figure 4.24 (a): although category “0” is the one
whose predictions have the smallest difference to the input, the network as-
signs the input to category “9”.5 The reason for this behavior is that too
few of the features that separate the categories with higher probabilities are
evaluated. In this specific example, the network evaluates only one feature
that separates the categories “0” and “9”, but 8 features for which these two
categories make the same predictions.

It is unlikely that there is a solution to this problem that works in all

5It depends on the printing whether this can actually be recognized from the diagram (the
color of the strongest curve differs between the diagram 4.24 (a) and the corresponding
diagram 4.20 (b)).

63

Chapter 4 Neural network implementation

(a) Digit “0” (b) Digit “4”

Figure 4.24: States of the category neurons during the recognition of modified
images of the digits “0” and “4” using implementation 2 of the
feature selection circuit and a naive strategy to build the network

(a) Digit “0” (b) Digit “4”

Figure 4.25: States of the category neurons during the recognition of modi-
fied images of the digits “0” and “4” using implementation 2 of
the feature selection circuit and a random strategy to build the
network

64

4.7 Learning

situations. The best approach is probably to use a learning process to develop
a feature selection circuit that performs well for a given set of examples. If
the network must be explicitly constructed, however, a simple strategy is the
following: if there is more than one feature for which the predictions of two
categories are maximally different, select one of those features randomly. For
all examples that were analyzed in the preparation of this work, this strategy
actually produced better results than the naive strategy. Figure 4.25 shows two
state traces produced by a network that was built using the random strategy.

4.7 Learning

Up to now, we have assumed that the network is constructed once and does
not change during the recognition process. The strengths that were chosen
for the connections were based on a fixed set of training patterns. For many
applications, however, this is not a realistic scenario. For example, the full set
of training patterns is often not known in advance. For such applications, it
is important that the categories can be adapted by a learning process.

Generally, we can distinguish between supervised and unsupervised learning
methods. In a supervised learning process, the system to be adapted receives
an external training signal that contains information about the objective of
the adaption process. In our case, the external signal would tell the network
which category a given input belongs to. The network can then use these
information to adapt its neurons and connections so that it becomes able to
correctly classify inputs alone, without relying on the training signal. In an
unsupervised learning process, the system to be adapted receives no training
signal. Instead, the objective of the system is to develop a suitable set of
categories from the inputs alone. To do this, the system has to analyze the
structure of its input space.

In natural neural networks, there are probably many different adaption pro-
cesses of both types (supervised and unsupervised) running in parallel. In
this work, we restrict ourselves to supervised learning. Usually, the individual
adaption steps are very small and change the parameters of the network only
slightly. A significant change of the behavior of the network can therefore
happen only over a large number of iterations.

4.7.1 Hebbian learning

It is widely accepted that in natural neural networks, changes of the synaptic
strengths which depend on the activities of the presynaptic and postsynaptic
neurons are a major source of adaption. In his 1949 book [12], Donald Hebb
suggested a principle for this adaption process, which is now applied in many
learning methods:

“When an axon of cell A is near enough to excite cell B or
repeatedly or consistently takes part in firing it, some growth or

65

Chapter 4 Neural network implementation

metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.”

According to this principle, an excitatory connection from a neuron A to a
neuron B is strengthened when the activity of neuron A contributes to the
activity of neuron B. Hebb considered only the strengthening of connections.
Weakening can be introduced by assuming some form of competition between
the connections that provide input to the same neuron. With competition,
an excitatory connection from a neuron A to a neuron B is weakened when
neuron A does not contribute to the activity of neuron B.

Since Hebb formulated his principle, it has been confirmed in many exper-
iments. For example, a more recent observation is that the change of the
strength of a synapse actually depends on the precise timing of presynaptic
and postsynaptic activity [3, 36]. Measurements in cultivated neuron cells
have shown that the strength of a synapse is increased if a presynaptic spike
occurs in a small time interval before a postsynaptic spike, and decreased if
a presynaptic spike occurs in a small time interval after a postsynaptic spike.
This effect is called spike-timing-dependent plasticity (STDP). As in our neu-
ron model, the state of a neuron corresponds to an average over the number
of spikes in a time interval, however, we do cannot model this effect directly.

What about inhibitory connections? A simple approach is to treat them
inversely to the excitatory connections. When doing this, however, it should
be kept in mind that natural neural networks do not show such a symmetry
between excitatory and inhibitory connections. As inhibitory synapses are
often located at more central places at the postsynaptic neuron, they can have
a greater influence on the activity of this neuron than excitatory synapses,
which are usually located more peripherally at the dendrites. For our purpose,
these details are not important; we treat excitatory and inhibitory connections
symmetrically. Additionally, we allow the connections to change the type of
their synapse during learning. As we have already described in section 4.1,
this is also not possible in natural neural networks.

4.7.2 The learning rule

The learning rule that we use to adapt our network is very simple. After
computing its state in iteration t, every adapting neuron i sets the weights wij

of all its input connections to

wij(t + 1) := wij(t) + ∆wij(t) (4.16)

where ∆wij(t) is defined as

τ∆wij(t) := si(t)(2sj(t − ∆tij) − 1) − si(t)αwij (t) (4.17)

The constant τ > 0 controls the rate of the weight adaption. The first term of
∆wij implements the principle of Hebbian learning: If presynaptic activity is

66

4.8 Simulation of the learning process

Figure 4.26: Average difference between synthetic and developed weights when
learning the digit images over 30 training cycles

followed by postsynaptic activity, then si(2sj−1) is positive, which means that
the connection should be strengthened. If, on the other hand, postsynaptic
activity is not preceded by presynaptic activity, then si(2sj − 1) is negative,
which means that the connection should be weakened. If the postsynaptic
neuron is not active at all, then si(2sj − 1) = 0 and the connection strength is
not changed. The decay term siαwij with α > 0 is necessary to stabilize the
connection strengths. Without it, the weights could grow to arbitrarily large
positive or negative values as long as si(2sj − 1) > 0.

4.8 Simulation of the learning process

When the network must learn new or changed categories, the connections that
must be adapted are the bottom-up connections from the feature neurons to
the category neurons and the top-down connections from the category neurons
to the select, nselect, or preselect neurons (depending on the implementation
of the feature selection circuit). For the bottom-up path, it is reasonable to
assume that there is an external training signal which activates the category
that an input belongs to. In the human cortex, for example, such a training
signal could originate in another cortical area. In contrast to this, we cannot
assume that the network receives a training signal for the top-down path which
tells the network what feature should be selected. Instead, the development
of “good” top-down connections is probably a more subtle process. For this
reason, we concentrate on the development of the bottom-up connections,
which fits better in the scheme of supervised learning.

The objective of the learning process is to develop bottom-up weights that
are similar to the weights that we used in our category activation circuit. In
section 4.5.2, we have described that the strength of the connection from the
feature+ neuron k to the category neuron i should be set to ci,k/nfeature, and

67

Chapter 4 Neural network implementation

the strength of the connection from the feature− neuron k to the category

neuron i to −ci,k/nfeature. To measure the progress of the learning process, we
use the average absolute difference between these synthetic weights and the
weights that have been developed in the network.

Figure 4.26 shows the result of a learning simulation. Over 30 training cy-
cles, the digit images from figure 4.11 have been presented to the network,
and the corresponding category neurons have been activated by an external
signal. The learning parameters were set to τ = 10 and α = 1.0. The weights
from the feature neurons to the category neurons were initialized to small pos-
itive or negative random values. As can be seen in the figure, the difference
between the synthetic weights and the weights in the network becomes very
small. Thus, the learning process works as expected. What can also be rec-
ognized from the figure is the influence of the decay term: with the number
of training cycles, the absolute values of the weights tend to increase, and the
adaption of the weights slows down more and more.

68

Chapter 5

Summary

Let us make a short summary of the preceding chapters, of what we have
achieved in this work and what not. Our aim was to develop a neural network
model that can be applied to solve practical pattern recognition tasks. In the
development of our model, we wanted to make use of principles that can be
found in natural neural networks. Our hope was that this way we could get
an insight into the inventions of nature.

Using knowledge from neuroanatomy and results from neuropsychological
experiments, we concluded that the recurrent connections in natural neu-
ral networks must play an important role in pattern recognition processes.
Consequently, we aimed at developing a recurrent network as well. By us-
ing information-theoretical considerations, we then formulated what features
should be evaluated so that the network profits maximally from the informa-
tion that are contained in the input, and how the observation of a feature
value should influence the probabilities assigned to the categories so that only
information that is actually contained in the input is taken into account. The
model we developed is constructive in the sense that its objective is to find
a combination of stored concepts which matches the actual observations; this
combination corresponds to a probability distribution over the categories.

Next, we constructed a concrete neural network which implements the ab-
stract model. The network consists of modules that solve the subtasks feature
evaluation, category activation, and feature selection. We extended the net-
work to support non-binary feature values, non-binary associations between
features and categories, and to compensate for errors in the input to a certain
extend. Using computer simulations, we have shown that both, the binary
and the extended network, can be used to solve pattern recognition tasks.

Realistic sensory data is very high-dimensional and contains errors. What
should have become clear is that every pattern recognition system that pro-
cesses such data must concentrate on specific aspects of its input. Without
a mechanism to ignore the parts of the data that do not contribute to the
recognition of the input, such a system would hardly be able to successfully
recognize anything at all. Naturally, which parts of the input are important
and which can be ignored depends on the state of the pattern recognition sys-
tem itself. In this work, we have demonstrated how a mechanism that follows
these principles can be implemented in a neural network.

69

Chapter 5 Summary

Suggestions for possible future work

The problems of our model that have arisen show the way for possible future
work. Our analysis of the generalized model in section 3.7 did not lead to
anything that could directly be implemented in a neural network. Possibly,
more analytical results can be obtained by formulating additional constraints,
for example, by making reasonable assumptions about the probability distri-
bution of the feature values. Besides this, it could be interesting to work out
how our model fits into the framework of Bayesian analysis [16, 22].

On the practical side, the performance of the network could be improved
by developing a better feature selection circuit. As we have seen in the sim-
ulations in section 4.6.1, the information gain of the network falls down after
a few iterations if we use the implementation that we have derived from the
theoretical considerations. Making an improvement at this point probably re-
quires an extension of the neuron model to support a maximum or minimum
computation in the network. This should be completed by showing how the
top-down connections in the network can be developed in a learning process.

In this work, we have examined a network with essentially two layers where
one layer represented the observed features and the other layer represented
the probabilities of the categories. It should be an interesting approach to
use several of such pattern recognition networks as modules to build up a
more complex system. If these pattern recognition modules could also be
successfully applied to solve control tasks, then such a system would even be
able to interact with its environment.

70

Bibliography

[1] David Applebaum. Probability and Information. Cambridge University
Press, 1996.

[2] Guszti Bartfai. An ART-based modular architecture for learning hierar-
chical clusterings. Technical Report CS-TR-95/3, Department of Com-
puter Science, Victoria University of Wellington, New Zealand, 1995.

[3] Guo-quiang Bi and Mu-min Poo. Synaptic modification by correlated
activity: Hebb’s postulate revisited. Annual Reviews in Neuroscience,
24:139–66, 2001.

[4] Kim T. Blackwell, Thomas P. Vogel, and Daniel L. Alkon. Pattern match-
ing in a model of dendritic spines. Network: Computation in Neural

Systems, 9:107–121, 1998.

[5] Gail Carpenter and Stephen Grossberg. ART2: Self-organization of stable
category recognition codes for analog input patterns. Applied Optics,
26(23):4919–4930, 1987.

[6] Gail Carpenter and Stephen Grossberg. A massively parallel architec-
ture for a self organizing neural pattern recognition machine. Computer

Vision, Graphics, and Image Processing, 37:54–115, 1987.

[7] Gail Carpenter and Stephen Grossberg. ART3: Hierarchical search using
chemical transmitters in self-organizing pattern recognition architectures.
Neural Networks, 3:129–152, 1990.

[8] Peter Dayan and L. F. Abbot. Theoretical Neuroscience. MIT Press,
2001.

[9] Charles M. Gray and Wolf Singer. Stimulus-specific neuronal oscillations
in orientation columns of cat visual cortex. Proceedings of the National

Acadamy of Sciences, 86:1698–1702, 1989.

[10] Stephen Grossberg. Adaptive pattern classification and universal pattern
recoding: I. Parallel development and coding of neural feature detectors.
Biological Cybernetics, 23:121–134, 1976.

71

Bibliography

[11] Stephen Grossberg. Adaptive pattern classification and universal pattern
recoding: II. Feedback, expectation, olfactation, and illusions. Biological

Cybernetics, 23:187–202, 1976.

[12] Donald Hebb. The Organization of Behavior: A Neuropsychological The-

ory. Wiley, 1949.

[13] Harro Heuser. Lehrbuch der Analysis, Teil 2. B. G. Teubner, 11th edition,
2000.

[14] Alan L. Hodgkin and Andrew F. Huxley. A quantitative description of
membrane current and its application to conduction and excitation in
nerve. Journal of Physiology, 117:500–544, 1952.

[15] David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular inter-
action and functional architecture in the cat’s visual cortex. Journal of

Physiology, 160:106–154, 1962.

[16] Edwin T. Jaynes. Probability Theory: The Logic of Science. Cambridge
University Press, Fragmentary Edition of March 1996.

[17] Gaetano Kanisza. Organization in Vision. Praeger, 1979.

[18] B. Kosko. Bidirectional associative memories. IEEE Transactions on

Systems, Man, and Cybernetics, 18:49–60, 1988.

[19] Victor A. F. Lamme and Pieter R. Roelfsema. The distinct modes of
vision offered by feedforward and recurrent processing. Trends in Neuro-

science, 23(1):571–579, 2000.

[20] Tai Sing Lee, David Mumford, Richard Romero, and Victor A. F. Lamme.
The role of the primary visual cortex in higher level vision. Vision Re-

search, 38:2429–2454, 1998.

[21] Tai Sing Lee and My Nguyen. Dynamics of subjective contour forma-
tion in the early visual vortex. Proceedings of the National Acadamy of

Sciences of the USA, 98(4):1907–1991, 2001.

[22] David J. C. MacKay. Probable networks and plausible predictions —
a review of practical Bayesian methods for supervised neural networks.
Network: Computation in Neural Systems, 6:469–505, 1995.

[23] Warrent McCulloch and Walter Pitts. A logical calculus of the ideas im-
manent in nervous activity. Bulletin of Mathematical Biophysics, 5:115–
133, 1943.

[24] Bartlett W. Mel. Why have dendrites? A computational perspective.
In G. Stuart, N. Spruston, and M. Hausser, editors, Dendrites. Oxford
University Press, 1999.

72

Bibliography

[25] Bartlett W. Mel, Daniel L. Ruderman, and Kevin A. Archie. Translation-
invariant orientation tuning in visual ‘complex’ cells could derive from in-
tradendritic computations. Journal of Neuroscience, 18:4325–4334, 1998.

[26] David Mumford. On the computational architecture of the neocortex,
I. The role of the thalamo-cortical loop. Biological Cybernetics, 65:135–
145, 1991.

[27] David Mumford. On the computational architecture of the neocortex,
II. The role of cortico-cortical loops. Biological Cybernetics, 66:241–251,
1992.

[28] Tatjana A. Nazir and J. Kevin O’Regan. Some results on translation
invariance in the human visual system. Spatial Vision, 5:81–100, 1990.

[29] Christoph Paus. Notes for advanced mechanics. Lecture notes for course
8.21, MIT, available at http://web.mit.edu/8.21/www/intro.html, 2002.

[30] Rajeev D. S. Raizada and Stephen Grossberg. Towards a theory of the
laminar architecture of cerebral cortex: Computational clues from the
visual system. Cerebral Cortex, 13:100–113, 2003.

[31] Raúl Rojas. Neural Networks: A Systematic Introduction. Springer, 1996.

[32] Edmund T. Rolls, Martin J. Tovée, and Stefano Panzeri. The neuro-
physiology of backward visual masking: Information analysis. Journal of

Cognitive Neuroscience, 11(3):300–311, 1999.

[33] D. Rumelhart and J. McClelland. Parallel Distributed Processing. MIT
Press, 1986.

[34] Claude E. Shannon and Warren Weaver. The Mathematical Theory of

Communications. University of Illinois Press, 1949.

[35] Gordon Shepherd. The synaptic organization of the brain, 3rd edition.
Oxford University Press, 1990.

[36] Sen Song, Kenneth D. Miller, and L. F. Abbott. Competitive Hebbian
learning through spike-timing-dependent synaptic plasticity. Nature Neu-

roscience, 3(9):919–926, 2000.

[37] Shimon Ullman and Sergei Soloviev. Computation of pattern invariance
in brain-like structures. Neural Networks, 12:1021–1036, 1999.

[38] Arjen van Ooyen, Jacob Duijnhouwer, Michiel W. H. Remme, and Jaap
van Pelt. The effect of dendritic topology on firing patterns in model
neurons. Network: Computation in Neural Systems, 13:311–325, 2002.

73

Bibliography

[39] Ruye Wang. A hybrid learning network for shift, orientation, and scaling
invariant pattern recognition. Network: Computation in Neural Systems,
12:493–512, 2001.

[40] Laurenz Wiskott. How does our visual system achieve shift and size
invariance? In J. L. van Hemmen and T. J. Sejnowski, editors, Problems

in Systems Neuroscience. Oxford University Press, 2002.

74

	Introduction
	Recurrent neural networks in nature
	Basic neuroanatomy of the cortex and the thalamus
	The cortex
	The thalamus

	Results from neuropsychological experiments
	Illusory contours
	Backward visual masking
	Figure-ground segmentation

	Models of the cortical function
	Adaptive resonance theory
	Mumford's theory

	Theoretical foundation
	Interaction of features and categories
	Example: visual pattern recognition from local subpatterns
	A step toward translation invariance
	Information entropy
	The maximum entropy principle
	The binary pattern recognition model
	The bottom-up path
	The top-down path

	The generalized model
	The bottom-up path
	The top-down path

	Some Remarks

	Neural network implementation
	Further neuroanatomy
	Types of neurons in the cortex
	Connections between cortical areas

	The neuron model
	Implementation of the binary model
	Feature evaluation
	Category activation
	Feature selection
	Initial activation and synchronization
	Network size

	Simulation of the binary model
	Implementation of an extended model
	Feature evaluation
	Category activation
	Feature selection

	Simulation of the extended model
	Implementation of the feature selection circuit
	Competition between the categories
	Inputs that contain errors

	Learning
	Hebbian learning
	The learning rule

	Simulation of the learning process

	Summary

